
Exercises for mathematical methods of
physics

Federico Manzonia

aMathematics and Physics department, Roma Tre

E-mail: federico.manzoni@uniroma3.it

mailto:federico.manzoni@uniroma3.it


Contents

1 Complex and analytic functions 1
1.1 de Moivre formula and integer powers 1
1.2 Complex logarithm and exponential 2
1.3 Complex powers and root 3
1.4 Analyticity domain of functions 3
1.5 Analytic functions 5
1.6 Construction of analytic or antianalytic functions 6
1.7 Remuvable, polar and essential singularities 8

2 Complex integration 11
2.1 Complex integral and line integrals 11
2.2 Cauchy theorem and Morera theorem 13
2.3 Principal value integrals, circumference arcs and complex integration 14

3 Series and residues 18
3.1 Taylor series 18
3.2 Laurent series 21
3.3 Residues 23

4 Residues integral 26
4.1 Integration using residues theorem 26

5 Asymptotic developments and integral estimates 30
5.1 Integration by parts 30
5.2 Integrals estimation 31

6 Distributions 32
6.1 Derivatives of distributions 32
6.2 The Dirac delta 34
6.3 ODEs and weak solutions 35

7 Finite dimensional linear spaces and euclidean spaces 38
7.1 Matrices and invariant quantities 38
7.2 Invariant subspaces 39
7.3 Nullity + Rank 40
7.4 Euclidean spaces 41

– i –



8 Eigenvalue problems and matrix functions 45
8.1 Classification of matrices 45
8.2 Matrices determination 46
8.3 Matrix functions 48
8.4 Matrix ODEs 50

9 Abstract linear spaces 51
9.1 Lebesgue spaces 51

10 Eigenvalue problems in infinite dimensional spaces 52
10.1 Resolvent operator for finite-dimensional matrices 52
10.2 Spectrum of an operator 53

11 Fourier transformation and series 55
11.1 Fourier series 55
11.2 Computing Fourier transformations 56
11.3 Fourier transformation and ODEs 58

12 Integral equations 58
12.1 ODEs and Volterra integral equations 58
12.2 Volterra integral equations of II kind 60
12.3 Fredholm integral equations of II kind 61

13 Green function and Sturm-Liuville operators 64
13.1 Find Green functions 64
13.2 Solution of ODEs with Green function 65

14 PDEs 67
14.1 Wave equation 67
14.2 Heat equation 69

1 Complex and analytic functions

1.1 de Moivre formula and integer powers
Given the complex number z = 1−

√
3i compute the number z6 and write the result

in cartesian coordinates.
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Given the polar form of a complex number z = ρeiθ with ρ its modulus and θ its
argument,

ρ =
√

Re(z)2 + Im(z)2, Arg(z) =


arctang

( Im(z)
Re(z)

)
if Re(z) > 0

arctang
( Im(z)
Re(z)

)
+ π if Re(z) < 0 ∪ Im(z) ≥ 0

arctang
( Im(z)
Re(z)

)
− π if Re(z) < 0 ∪ Im(z) < 0

,

(1.1)
we can compute

zn = ρneinθ; (1.2)

where now the modulus is ρn while the argument is nθ. Using Euler formula we can
write

zn = ρn[cos(nθ) + isin(nθ)], (1.3)

this is the de Moivre formula. Let us use it to compute z6 with z = 1−
√
3i. The

modulus is ρ =
√
1 + 3 =

√
4 = 2 while its argument is Arg(z) = arctang(−

√
3
1
) = −π

3
.

Therefore the we can compute the power

z6 = 26
[
cos

(
− 6π

3

)
+ isin

(
− 6π

3

)]
= 64. (1.4)

1.2 Complex logarithm and exponential
Compute the natural logarithm and the exponential of the number z = −2

√
3 + 2i.

The complex logarithm is given by

log(z) = log(ρ) + i(Arg(z) + 2kπ) k ∈ Z (1.5)

where the principal branch is −π < Arg(z) < π and without the term 2ikπ, while
the complex exponential is given by

ez = eRe(z)eiIm(z). (1.6)

In our case we have Re(z) = −2
√
3, Im(z) = 2 and

ρ =
√
12 + 4 =

√
14, Arg(z) = arctang

(
− 2

2
√
3

)
+ π = −π

6
+ π =

5

6
π; (1.7)

therefore

log(z) = log(
√
14) + i

5

6
π =

1

2
log(14) + i

5

6
π, ez = e−2

√
3e2i. (1.8)

All the other branches of the logarithm are given by

log(z) = log(
√
14) + i

5

6
π =

1

2
log(14) + i

5

6
π + 2ikπ, k ∈ Z. (1.9)
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1.3 Complex powers and root
Compute the powers ze, zi and the root 4

√
z, of z = 2 + 2i.

Let us compute modulus and argument of z: ρ =
√
4 + 4 =

√
8 and Agr(z) =

arctang(1) = π
4
. The power for a complex exponent is given by the polyhydrome

function

(zα)k = elog(z
α) = eαlog(z) = eαlog(ρ)eiα(Arg(z)+2kπ) with k ∈ Z; (1.10)

therefore

(ze)k = eelog(
√
8)eie

(
π
4
+2kπ

)
= 8

e
2

[
cos

(
e

(
π

4
+ 2kπ

))
+ isin

(
e

(
π

4
+ 2kπ

))]
;

(zi)k = eilog(
√
8)ei

2
(

π
4
+2kπ

)
= e−

(
π
4
+2kπ

)
[cos(log(

√
8)) + isin(log(

√
8))].

(1.11)
The root is also a polyhydrome function and the values of the root constitute the
vertices of a regular polygon inscribed in a circumference of radius n√ρ in the complex
plane; it is given by

wk = ρ
1
n ei

Arg(z)+2kπ
n with n ∈ Z and k = 0, ..., n− 1; (1.12)

therefore
w0 = 8

1
8 ei

π
4
4 = 8

1
8

[
cos

(
π

16

)
+ isin

(
π

16

)]
;

w1 = 8
1
8 ei

π
4 +2π

4 = 8
1
8

[
cos

(
9π

16

)
+ isin

(
9π

16

)]
;

w2 = 8
1
8 ei

π
4 +4π

4 = 8
1
8

[
cos

(
17π

16

)
+ isin

(
17π

16

)]
;

w3 = 8
1
8 ei

π
4 +6π

4 = 8
1
8

[
cos

(
31π

16

)
+ isin

(
31π

16

)]
;

(1.13)

Values of the nth root are particularly important for the finite nth cyclic group;
indeed normalizing them to their common modulus we get the elements of the finite
nth cyclic group. Moreover the regular polygon these values drown in the complex
plane is called cycle graphs in these context and turn out to be very useful in order to
understand isomorphisms between these groups. Cyclic groups plays and important
role in physics for example in some geometrical constructions in string theory or in
the standard models of particle physics.

1.4 Analyticity domain of functions
Given the following functions says which is their analyticity domain:

• f(z) = log((2− z)2);

– 3 –



• g(z) = zz;

• h(z) = log(cos(z));

• q(z) =
√
z2 − 1;

• p(z) = sinh(sin(z))
z2+9

.

Let us assume, in general, the principal branch for the logarithm; therefore the
branch cut is along the negative real axis. The logarithm is analytic in C\{z|Re(z) ≤
0∪ Im(z) = 0} so to find the analyticity domain of f(z) we need to solve the equation

(2− z)2 = −t ⇒ z = 2± i
√
t t ≥ 0. (1.14)

Therefore f(z) is analytic in C \ {z|z = 2± i
√
t, t ≥ 0}.

Function zz can be rewritten as

zz = ezlog(z), (1.15)

since the exponential is analytic in C, analyticity domain of the function g(z) is the
same of log(z), namely C \ {z|Re(z) ≤ 0 ∪ Im(z) = 0}.
Thinking as before, for h(z) we need to solve the equation

cos(z) = −t ⇒

{
cos(x)cosh(y) = −t

−sin(x)sinh(y) = 0
t ≥ 0, (1.16)

where we used z = x+ iy, cos(iy) = cosh(x), sin(iy) = isinh(y) and

cos(x+iy) = cos(x)cos(iy)−sin(x)sin(iy) = cos(x)cosh(y)−isin(x)sinh(y). (1.17)

Form the second equation we have

x = kπ k ∈ Z or y = 0; (1.18)

since cosh(y) ≥ 1 we need to discard solutions with k = 2n with n ∈ Z otherwise the
first equation has no solution (since cos(x) would be positive). On the other hand
solutions with k = 2n+ 1 with n ∈ Z are ok and (cos(x) would be negative)

cosh(y) = t with x = (2n+ 1)π and n ∈ Z, (1.19)

whose solution is y ∈ (−∞,+∞); these are numbers of the form

I := {z|z = (2n+ 1)π + iy with n ∈ Z and y ∈ (−∞,+∞)}. (1.20)

If y = 0 then cosh(y) = 1 and

cos(x) = −t ⇒ x = arccos(−t) (1.21)
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and since t ≥ 0, x ∈ [π
2
, π] (because the argument must be smaller than 1 and so

−t ∈ [−1, 0]), these are numbers of the form

II :=

{
z|z = x with x ∈

[
π

2
, π

]}
. (1.22)

in the end, function h(z) is analytic in C \ {I ∪ II}.
Function q(z) can be rewritten as

√
z2 − 1 = e

1
2
log(z2−1), (1.23)

so, again, we have
z2 − 1 = −t with t ≥ 0. (1.24)

This equation has solutions

z2 = −t+ 1 ⇒ z = ±
√
−t+ 1 (1.25)

but we have to pay attention at the case t ∈ (1,+∞), so{
z = ±

√
1− t if t ∈ [0, 1];

z = ±i
√
t− 1 if t ∈ (1,+∞);

(1.26)

the first case is the real compact [−1, 1] := {z = x|x ∈ [−1, 1]} while the second
case is the imaginary axis Im(z) \ {0}. Therefore, our function in analytical in
C \ {[−1, 1] ∪ Im(z) \ {0}}
The last case is simpler. sin(z) and sinh(z) are entire and entire function form a
closed algebra under composition; therefore the only problems are the zeros of the
denominator

z2 + 9 = 0 ⇒ z = ±3i. (1.27)

Therefore, p(z) is analytical in C \ {−3i, 3i}.

1.5 Analytic functions
Given the functions f(z) = z+ez, ¯f(z) and g(z) = z̄

z
say if they are analytic functions

or not.

Let us start writing the real and imaginary parts of our functions

f(z) = x+ iy + ex+iy = x+ iy + ex[cos(y) + isin(y)] = x+ excos(y) + i[y + exsin(y)];

g(z) =
x− iy

x+ iy

x− iy

x− iy
=

x2 − y2 − 2ixy

x2 + y2
=

x2 − y2

x2 + y2
− i

2xy

x2 + y2
.

(1.28)
Consider f(z), its real and imaginary parts are

u = x+ excos(y), v = y + exsin(y), (1.29)
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these are differentiable function in R2 and we only need to check Cauchy-Riemann
conditions. These are obviously satisfied since ∂f(z)

∂z̄
= 0, but let us do the full

computation:

∂v

∂x
= exsin(y),

∂u

∂y
= −exsin(y) ⇒ ∂v

∂x
= −∂u

∂y
(1.30)

and
∂v

∂y
= 1 + excos(y),

∂u

∂x
= 1 + excos(y) ⇒ ∂v

∂y
=

∂u

∂x
. (1.31)

In the and f(z) is an analytic function. Let us see g(z), its real and imaginary parts
are

u =
x2 − y2

x2 + y2
, v = − 2xy

x2 + y2
, (1.32)

these function are differentiable everywhere in R2

{0,0} . However we expect that g(z) is
not analytic since it depends on z̄, let us check explicitly

∂v

∂x
=

2x2y − 2y3

(x2 + y2)2
,

∂u

∂y
=

2x2y + 2y3

(x2 + y2)2
⇒ ∂v

∂x
̸= −∂u

∂y
. (1.33)

Last but not least, ¯f(z); obviously this is not an analytic function since f(z) is.
Anyway ¯f(z) is antianalytic (this is a universal property: if f(z) is analytic then ¯f(z)

is antianalytic) and satisfies a set of revisited Cauchy-Riemann conditions (where the
minus sing is in the other equation).

1.6 Construction of analytic or antianalytic functions
Consider the real functions f(x, y) = x2+xey, g(x, y) = cos(x)+y, q(x, y) = e3xsin(3y)

and h(x, y) = x2 − y2 + x. which of these functions can be the real or imaginary part
of an analytic or antianalytic function? For those that are, construct the associated
analytic or antianalytic complex functions.

We need to check thet they are harmonic function on the real plane, namely they
satisfy the Poisson equation ∆U(x, y) = 0. Let us check:

∆f(x, y) = (∂2
x + ∂2

y)f(x, y) = 2 + xey ̸= 0;

∆g(x, y) = (∂2
x + ∂2

y)g(x, y) = −cos(x) ̸= 0;

∆q(x, y) = (∂2
x + ∂2

y)h(x, y) = 9e3xsin(3y)− 9e3xsin(3x) = 0.

∆h(x, y) = (∂2
x + ∂2

y)h(x, y) = 2− 2 = 0.

(1.34)

Only q(x, y) and h(x, y) are harmonic functions, let us construct the analytic and
antianalytic complex functions associated. Let us assume that q(x, y) is the real part
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of an analytic complex function, q(x, y) ≡ u(x, y) = e3xsin(3y); essentially we have
to solve the Cauchy-Riemann conditions:

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (1.35)

We have
∂v

∂y
= 3e3xsin(3y) (1.36)

and
∂v

∂x
= −3e3xcos(3y). (1.37)

Integrating 1.36 in y we get v(x, y) up to a x-dependent arbitrary function

v(x, y) =

∫
3e3xsin(3y)dy =︸︷︷︸

3y=l

e3x
∫

sin(l)dl = −e3xcos(3y) + C(x); (1.38)

to fix C(x) we impose 1.37, therefore

∂v

∂x
= −3e3xcos(3y) + C ′(x) =︸︷︷︸

1.37

−3e3xcos(3y) ⇒ C ′(x) = 0 ⇒ C(x) = C. (1.39)

In the and our analytic complex function is

f(z) = u(x, y) + iv(x, y) =

= e3xsin(3y)− ie3xcos(3y) + iC = e3x(sin(3y)− icos(3y)) + iC =

− ie3xe3iy + iC = −ie3(x+iy) + iC = −ie3z + iC.

(1.40)

Let us repeat the exercise for h(x, y) but using Cauchy-Riemann conditions for
antianalytuc functions

∂u

∂x
= −∂v

∂y
,

∂v

∂x
=

∂u

∂y
. (1.41)

Assume that h(x, y) is the imaginary part of an antianalytuc function, h(x, y) ≡
v(x, y) = x2 − y2 + x. We than have

∂u

∂x
= 2y (1.42)

and
∂u

∂y
= 2x+ 1. (1.43)

Integrating 1.42 in x we get u(x, y) up to a y-dependent arbitrary function

u(x, y) =

∫
2ydx = 2xy + C(y); (1.44)
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to fix C(y) we impose 1.43, therefore

∂u

∂y
= 2x+ C ′(y) =︸︷︷︸

1.43

2x+ 1 ⇒ C ′(y) = 1 ⇒ C(y) = y + C. (1.45)

In the and our antianalytic complex function is

f(z) = u(x, y) + iv(x, y) = 2xy + y + C + i(x2 − y2 + x) =

= 2xy + i(x2 − y2) + y + ix+ C = iz̄2 + iz̄ + C
(1.46)

1.7 Remuvable, polar and essential singularities
Given the complex functions:

1. f(z) = sin(z−2)
z−2

;

2. g(z) = e
1
z

z2
;

3. h(z) = 1
(z−2)2z

;

4. q(z) = 3z3+2z2+z
3z+2z2+z3

;

5. Γ(z) = e−γz

z

∏∞
n=1

(
1 + z

n

)−1
e

z
n γ ≈ 0.577216;

say which kind of singularity they have and if are meromorphic, entire or none of these.

Let us begin with some reminders. A isolated singularity in z0 is called remuvable
if exists finite the limit of the function in this point

lim
z→z0

f(z) = c ∈ C; (1.47)

therefore, defining a cases function that take the value c at z = z0 we get an analytic
function. A singularity in z0 is called a pole of order n if exists finite, in this point,
the limit of the function times the monomial m(z; z0;n) = (z − z0)

n

lim
z→z0

m(z; z0;n)f(z) = lim
z→z0

(z − z0)
nf(z) = c ∈ C. (1.48)

A singularity in z0 is called essential if does not exist the limit of the function at this
point. We remind also the definition of entire and meromorphic function: a function
is called entire if and only if it has no singularity in C but only in Ĉ while it is called
meromorphic if has only polar singularity in C.
Let us now begin with the first function; this is analytic in C \ {2} so we take the
limit for z → 2. Since sin(z − 2) is analytic we can expand it around z0 = 2 in series
and this series must converge; this series is the same of the real function sin(x) and
therefore we have (we can use also de l’Hôpital rule, but pay attention: this rule is
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due to Lagrange theorem and in general it is not true for a complex function, however
if the function is at least meromorphic we can apply safely the rule)

lim
z→2

f(z) = lim
z→2

∑∞
k=0(−1)k(z − 2)2k+1

(z − 2)(2k + 1)!
= lim

z→2

∞∑
k=0

(−1)k(z − 2)2k

(2k + 1)!
= 1. (1.49)

So, we can define an extension of the function f(z) that is analytical all over C:

f̃(z) =

{
f(z) if z ∈ C/{2}
1 if z = 2

. (1.50)

The second function is g(z), we have a singularity in z0 = 0 and

lim
z→0

g(z) = lim
z→0

e
1
z lim
z→0

1

z2
; (1.51)

both limits diverge but the second one can be "adjusted", indeed

lim
z→0

m(z, 0, 2)
1

z2
= lim

z→0
z2

1

z2
= 1. (1.52)

The real problem is the first limit, indeed there is no hope the limit converge when
we multiply it by m(z, 0, n) for none n; therefore this limit seems to give a essential
singularity, let us check it. Write z = ρeiθ, so

lim
z→0

e
1
z = lim

(ρ,θ)→(0,θ∗)
e

1

ρeiθ (1.53)

and this limit gives different values for different values of θ∗. Let us exhibit this
behavior: choose θ∗ ≡ θ1 = 0 and θ∗ ≡ θ2 =

π
2
, we get

lim
(ρ,θ)→(0,0)

e
1

ρeiθ = lim
(ρ,θ)→(0,0)

e
1
ρ = ∞ (1.54)

while

lim
(ρ,θ)→(0,π

2
)
e

1

ρeiθ = lim
(ρ,θ)→(0,π

2
)
e

1

ρe
i π2 = lim

(ρ,θ)→(0,π
2
)
e−

i
ρ = lim

(ρ,θ)→(0,π
2
)

[
cos

(
1

ρ

)
− isin

(
1

ρ

)]
(1.55)

which is complex and does not exist.
It is now time of h(z), this seems to have only polar singularities since we have no
numerator to expand in series. Singularity point are in z0 = 0 and z1 = 2 so let us
consider the limits

lim
z→0

m(z; 0; 1)h(z) = lim
z→0

z
1

z(z − 2)2
=

1

4
, (1.56)

and
lim
z→2

m(z; 2; 1)h(z) = lim
z→2

(z − 2)
1

z(z − 2)2
= lim

z→2

1

z(z − 2)
= ∞, (1.57)
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no good novels; let us try with

lim
z→2

m(z; 2; 2)h(z) = lim
z→2

(z − 2)2
1

z(z − 2)2
= lim

z→2

1

z
=

1

2
, (1.58)

now it is better. So, z0 = 0 is a pole of order 1 while z1 = 2 is a pole of order 2 and,
therefore, the function is a meromorphic one.
Since q(z) is a rational function and the denominator is a polynomial we expect this
is a meromorphic function; the singularity points are the roots of the polynomial at
the denominator, so

3z + 2z2 + z3 = 0 ⇒ z(z2 + 2z + 3) = 0 (1.59)

from which we find

z0 = 0, z1 =
−2 +

√
4− 12

2
=

−2 + i
√
8

2
, z2 =

−2−
√
4− 12

2
=

−2− i
√
8

2
. (1.60)

We can now rewrite q(z) as

q(z) =
3z3 + 2z2 + 2

(z − z0)(z − z1)(z − z2)
; (1.61)

we immediately recognize that z0, z1 and z2 are all poles of degree 1. The possibility
to decompose a polynomial into multiplication of monomials containing the roots of
the polynomial itself is granted by the fundamental theorem of algebra, according to
which, any polynomial of degree n admits exactly n roots (with multiplicity) only in
a algebraic closed field (in this case C) which means that any polynomial of degree
n ≥ 1 admits at least one root in the field. It is interesting to note that, despite this
possibility, only solutions of polynomial with degree n ≤ 4 can always be write down
using radicals. This is a theorem based on Galois theory and permutation groups.
It is the turn of Γ(z), this is a very important function called gamma Euler function.
First let us massage the function

Γ(z) =
e−γz

z

∞∏
n=1

(
n+ z

n

)−1

e
z
n =

e−γz

z

∞∏
n=1

(
n

n+ z

)
e

z
n ; (1.62)

this an analytic function in C\Z− but has singularities in z ∈ Z−. Seems evident that
these singularities are polar ones and the gamma function is meromorphic, indeed

lim
z→0

m(z; 0; 1)Γ(z) = lim
z→0

z
e−γz

z

∞∏
n=1

(
n

n+ z

)
e

z
n =

∞∏
n=1

1 = 1 (1.63)
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and

lim
z→−n∗

m(z;−n∗; 1)Γ(z) = lim
z→−n∗

(z + n∗)
e−γz

z

∞∏
n=1

(
n

n+ z

)
e

z
n =

∞∏
n=1

1 =

= −eγn
∗

n∗

n∗−1∏
n=1

(
n

n− n∗

)
e−

n∗
n

∞∏
n=n∗+1

(
n

n− n∗

)
e−

n∗
n lim

z→−n∗
(z + n∗)

(
n∗

n∗ + z

)
e

z
n∗ =

= −eγn
∗

n∗

n∗−1∏
n=1

(
n

n− n∗

)
e−

n∗
n

∞∏
n=n∗+1

(
n

n− n∗

)
e−

n∗
n (n∗e−1) =

(−1)n
∗

n∗!
.

(1.64)
This function plays a crucial role in the renormalization techniques of Quantum Field
Theory (specially in dimensional regulazization where infinites are replaced by poles
of Euler’s gamma function).

2 Complex integration

2.1 Complex integral and line integrals
Consider the complex function f(z) = sin(z)ez and perform its integration along a
snapped line from (0, 0) to (2π, iπ) which pass through (0, iπ) using the definition of
complex integral.

The very definition would be using integral sums, however we know that these
converges to Riemann line integrals, and we have

I =

∫
γ

f(z)dz =

∫
γ

[u(x, y) + iv(x, y)][dx+ idy] =

=

∫
γ

u(x, y)dx− v(x, y)dy + i

∫
γ

u(x, y)dy + v(x, y)dx.

(2.1)

So we need to find real and imaginary parts, let us start with sin(z)

sin(z) = sin(x+iy) = sin(x)con(iy)+cos(x)sin(iy) = sin(x)cosh(y)+icos(x)sinh(y),

(2.2)
while

ez = ex+iy = ex[cos(y) + isin(y)]; (2.3)

therefore we have

u(x, y) = sin(x)cosh(y)excos(y)− cos(x)sinh(y)exsin(y);

v(x, y) = sin(x)cosh(y)exsin(y) + cos(x)sinh(y)excos(y).
(2.4)

The integration path is given by two straight lines, one from (0,0) to (0, iπ) and the
other one from (0, iπ) to (2π, iπ); so along the first line only y varies while along the
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second one only x varies. using property of integral we can split it into integrals along
the two lines I = Iγ1 + Iγ2 ; therefore for the first line γ1

Iγ1 = −
∫
γ1

v(0, y)dy + i

∫
γ1

u(0, y)dy =

= −
∫ π

0

cos(y)sinh(y)dy − i

∫ π

0

sin(y)sinh(y)dy

(2.5)

while for the second line γ2

Iγ2 =

∫
γ2

u(x, π)dx+ i

∫
γ2

v(x, π)dx =

= −
∫ 2π

0

sin(x)cosh(π)exdx− i

∫ 2π

0

cos(x)sinh(π)exdx.

(2.6)

These integrals are solved using repeated integration by parts
∫
fdg = fg −

∫
gdf ,

let us show how works in the case∫
cos(y)sinh(y)dy. (2.7)

Take f = cos(y) and dg = sinh(y)dy, therefore df = −sin(y)dy and g = cosh(y) and∫
cos(y)sinh(y)dy = cos(y)cosh(y) +

∫
cosh(y)sin(y)dy; (2.8)

now take f = sin(y) and dg = cosh(y)dy, therefore df = cos(y)dy and g = sinh(y),
so ∫

cosh(y)sin(y)dy = sin(y)sinh(y)−
∫

sinh(y)cos(y)dy. (2.9)

To sum up, we have

2

∫
sinh(y)cos(y)dy = cos(y)cosh(y) + sin(y)sinh(y); (2.10)

in the end ∫
sinh(y)cos(y)dy =

1

2
[cos(y)cosh(y) + sin(y)sinh(y)]. (2.11)

The other integrals are very similar, the result is

Iγ1 =
1

2
(1 + cosh(π))− i

2
sinh(π), (2.12)

and
Iγ2 =

cosh(π)

2
(e2π − 1) +

isinh(π)

2
(1− e2π). (2.13)

Finally

I =
1

2
(1 + cosh(π))− i

2
sinh(π) +

cosh(π)

2
(e2π − 1) +

isinh(π)

2
(1− e2π) =

=
1

2
(1 + e2π)− ie2π.

(2.14)
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2.2 Cauchy theorem and Morera theorem
Given the following complex functions:

1. f(z) = ez

z−8
;

2. g(z) = sin(z)cos(z);

3. h(z) = ecos(z);

4. Γ(z) =
∫∞
0

sz−1e−sds for Re(z) > 1;

5. ζ(z) =
∑∞

n=1
1
nz for Re(z) > 1;

say if they are analytic and compute their integrals along the curve γ := {z ∈
C | |z − 2| = 1}.

Function f(z) is the product of ez and 1
z−8

; ez is an analytic function while 1
z−8

has a polar singularity in z0 = 8, however the curve γ is a circumference of radius
R = 1 and center z0 = 2 and in the domain D with frontiers ∂D = γ the function
f(z) is analytical, therefore by Cauchy theorem we get∫

γ

f(z)dz = 0. (2.15)

Functions g(z) and h(z) are even more simpler cases. Indeed they are just combination
or composition of analytic functions, so they are analytic; therefore by Cauchy theorem
their integrals along every closed curve in the complex plane (including γ) is vanishing.
We now consider more interesting cases. Let us start with the gamma function; first
we would prove that this is analytical but we can do more, we can show at once
that this function in analytical and its integral along every closed line is zero. Let us
consider ∫

C

Γ(z)dz =

∫
C

∫ ∞

0

sz−1e−sdsdz =

∫ ∞

0

(∫
C

sz−1e−sdz

)
ds =

=

∫ ∞

0

e−s

(∫
C

sz−1dz

)
ds,

(2.16)

since sz−1 is surely an analytic function in the domain of integration and inside it,
the integral

∫
C
sz−1dz = 0 due to Cauchy theorem; we have got that∫

C

Γ(z)dz = 0 (2.17)

for every closed curve, therefore thanks to Morera theorem (that is, if a continuous,
complex-valued function defined on an open set D in the complex plane has vanishing
integral along any closed curve in D, the function must be analytical) we can conclude
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that Γ(z) is an analytical function. Similar considerations hold for ζ(z) called Riemann
ζ function, indeed ∫

C

ζ(z)dz =

∫
C

∞∑
n=1

1

nz
dz =

∞∑
n=1

∫
C

1

nz
= 0, (2.18)

since 1
nz is an analytic function; again thanks to Morera theorem we conclude that

Riemann ζ function is analytic. This function plays a crucial role in mathematics
due to its important connection with the theory of prime numbers.

2.3 Principal value integrals, circumference arcs and complex
integration

Compute the integrals

• I =
∫ +ib

−ia
g(z)dz =

∫ +ib

−ia
1
z3
dz;

• II = limρ→∞
∫
D:=
{
|z|=ρ | arg(z)∈

[
π
6
,π
3

]} h(z) = limρ→∞
∫
D:=
{
|z|=ρ | arg(z)∈

[
π
6
,π
3

]} e−zdz;

• III = limρ→∞
∫
C+

1
2 ρ

p(z)dz = limρ→∞
∫
C+

1
2 ρ

ei3z
(

z3

4(z3−1)
− 1

4

)
dz;

• IV =
∫
Q

q(z)
z2

dz =
∫
Q

ez

z2
√
3+z

dz with Q is the square of vertex 1, i,−1,−i;

• V =
∫
C+

1
2 ρ=2

+[−2,2]
l(z)dz =

∫
C+

1
2 ρ=2

+[−2,2]
z
z̄
dz (clockwise);

• V I =
∫
[0,i]+[i,1+i]+[0,1+i]

j(z)dz =
∫
[0,i]+[i,1+i]+[0,1+i]

(Im(z)−Re(z)−3i(Re(z)2))dz;

• V II =
∫
Cρ=1

G(z)dz =
∫
Cρ=1

log(z)
z

dz (counterclockwise)

• V III =
∫
Cρ=2

H(z)dz =
∫
Cρ=2

z
3
2 + z

4
3 + zz(log(z) + 1)dz (counterclockwise)

Function g(z) has a polar singularity in z = 0 therefore we need to split the
integral in the neighborhood of the singular point, moreover we change variable,
z = iy, since the path is along the imaginary axis; we get

I = lim
ϵ→0

(∫ 0−ϵ

−a

1

(iy)3
idy

)
+ lim

ϵ→0

(∫ +b

0+ϵ

1

(iy)3
idy

)
=

= lim
ϵ→0

(
−
∫ 0−ϵ

−a

dy

y3

)
+ lim

ϵ→0

(
−
∫ +b

0+ϵ

dy

y3

)
=

= lim
ϵ→0

(
1

2y2

∣∣∣∣0−ϵ

−a

)
+ lim

ϵ→0

(
1

2y2

∣∣∣∣+b

0+ϵ

)
=

= lim
ϵ→0

(
1

2ϵ2
− 1

2a2

)
+ lim

ϵ→0

(
1

2b2
− 1

2ϵ2

)
,

(2.19)
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which is not define, therefore we need to use the Cauchy’s principal value

PV (I) = lim
ϵ→0

(
1

2ϵ2
− 1

2a2
+

1

2b2
− 1

2ϵ2

)
=

1

2b2
− 1

2a2
. (2.20)

Let us consider the case II, to apply whatever of the lemmas for infinite arcs we need
to show that zh(z) →ρ→∞ 0 or to a constant c uniformly. Therefore we need to show
that zf(z) →ρ→∞ 0 uniformly

0 ≤ |zf(z)| = ρ|e−z| = ρ|e−ρeiθ | = ρ|e−ρ[cos(θ)+isen(θ)]| = ρ|e−ρcos(θ)e−isen(θ)| = ρe−ρcos(θ),

(2.21)
this function converge uniformly to zero in the I and IV quadrants (where θ ∈

[
− π

2
, π
2

]
so that 0 ≤ cos(θ) ≤ 1) since we have

ρe−ρcos(θ) ≤ ρe−ρ →ρ→∞ 0. (2.22)

Since the integration path is the circular sector from 30◦ to 60◦, the integral gives
zero. If the function converged to a constant c instead of zero the integral would give
ic
(
π
3
− π

6

)
= icπ

6
. Case III seems easy, we use Jordan’s lemma and we can conclude

that the integral is zero since 3 > 0. That is ok, but we need to check that the
function p(z) converge uniformly to zero. Let us compute the modulus of z3

4(z3−1)
,

0 ≤
∣∣∣∣ z3

4(z3 − 1)

∣∣∣∣ = ∣∣∣∣ ρ3e3iθ

4(ρ3e3θ − 1)

∣∣∣∣ = ρ3

4|(ρ3e3θ − 1)|
≤ ρ3

4|ρ3 − 1|
→ρ→∞

1

4
uniformly;

(2.23)
the last inequality is due to the fact that |u− v| ≥ ||u| − |v||. Therefore the function
p(z) →ρ→∞ 0 uniformly and the Jordan’s lemma can be applied. Let us look case IV ,
function q(z) = ez(3 + z)−

1
2 = ez−

1
2
log(3+z) is analytic in C \D where D = −3− t with

t ∈ [0,∞) is the branch cut of the principal branch of the logarithm. Therefore we
can use the Cauchy formula (recall that complex integrals are well defined also if the
function is not defined or not continuous in a finite number of point along the path)

q(n)(z0) =
n!

2πi

∫
Q

q(w)

(w − z)n+1dw
(2.24)

where w = 0 and n = 1, therefore we have∫
Q

ez

z2
√
3 + z

=
2πi

1!

(
ez√
3 + z

)′∣∣∣∣
z=0

= 2πi

(
1− 1

2(3 + z)

)
ez−

1
2
log(3+z)

∣∣∣∣
z=0

=
5πi

3
√
3
.

(2.25)
Case V is simply and since l(z) is not analytical we expect its integral along the path
to be different from zero. Let us split the integral as∫

C+
1
2 ρ=2

+[−2,2]

l(z)dz =

∫
C+

1
2 ρ=2

l(z)dz +

∫
[−2,2]

l(z)dz, (2.26)
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and let us parametrize the paths as

C+
1
2
ρ=2

= 2eiθ, with 0 ≤ θ ≤ π;

[−2, 2] = t with− 2 ≤ t ≤ 2.
(2.27)

We use the definition ∫
γ

l(z)dz = −
∫ b

a

l(γ(t))γ′(t)dt; (2.28)

where the minus is due to the orientation of the integation path. Using dz = d(2eiθ) =

2eiθidθ we have∫
C+

1
2 ρ=2

l(z)dz =

∫ π

0

2eiθ

2e−iθ
2eiθidθ = 2i

∫ π

0

e3iθdθ =
2i

3i
e3iθ
∣∣∣∣π
0

=
2

3(−1− 1)
= −4

3
;

(2.29)
and ∫

[−2,2]

l(z)dz =

∫ 2

−2

t

t
dt = t

∣∣∣∣2
−2

= 4. (2.30)

In the end we have got ∫
C+

1
2 ρ=2

+[−2,2]

l(z)dz = −4

3
+ 4 =

8

3
. (2.31)

It is now time of case V I, and again, since j(z) is not analytical we expect its integral
along the path to be different from zero; let us split again the integral as∫

[0,i]+[i,1+i]+[0,1+i]

j(z)dz =

∫
[0,i]

j(z)dz +

∫
[i,1+i]

j(z)dz +

∫
[0,1+i]

j(z)dz, (2.32)

and let us parametrize the paths as

[0, i] = iy with 0 ≤ y ≤ 1;

[i, 1 + i] = x+ i with 0 ≤ x ≤ 1;

[0, 1 + i] = t+ it with 0 ≤ t ≤ 1;

(2.33)

Using again the definition we have∫
[0,i]

j(z)dz =

∫ 1

0

y1idy = i
x2

2

∣∣∣∣1
0

=
i

2
;∫

[i,1+i]

j(z)dz =

∫ 1

0

(1− x− 3ix2)dx =

(
x− x2

2
− 3i

x3

3

)∣∣∣∣1
0

= 1− 1

2
− i =

1

2
− i;∫

[0,1+i]

j(z)dz =

∫ 1

0

(t− t− 3it2)(1 + i)dt = −3i(1 + i)

(
t3

3

)∣∣∣∣1
0

= −3i(1 + i)

3
= 1− i.

(2.34)
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In the end ∫
[0,i]+[i,1+i]+[0,1+i]

j(z)dz =
i

2
+

1

2
− i+ 1− i =

3

2
− 3

2
i. (2.35)

Consider now case V II. The function is polydrome and we have to choose a branch cut;
however this is not so important since the cut intersect just one point of the integration
path and so the integral is well defined. The only thing we have to care is to choose
the branch consistently with the parametrization of the path. For example we can
choose the branch with 0 < arg(z) < 2π and the integration parameter as 0 ≤ θ ≤ 2π.
The integral gives (using the definition and that ln(z) = ln(ρeiθ) = ln(1) + iθ)∫

Cρ=1

G(z)dz =

∫ 2π

0

e−iθ(ln(1) + iθ)eiθidθ =

∫ 2π

0

i2θdθ =

= −
∫ 2π

0

θdθ = −θ2

2

∣∣∣∣2π
0

= −2π2.

(2.36)

The last case can be divided in three integrals; let z = reiθ therefore we have

z
3
2 = r

3
2 ei

3
2
θ;

z
4
3 = r

4
3 ei

4
3
θ;

zz(log(z) + 1) = zzlog(z)(log(z) + 1);

(2.37)

all this function are polydrome and we have to choose a branch. Let us choose the
principal one, −π < θ < π; therefore we have a branch cut in the negative real axis
and the curve must be modified into a circumference Cϵ

ρ=2 with parameter given by
−π + ϵ ≤ θ ≤ π − ϵ in the limit ϵ → 0. In this region and on Cϵ

ρ=2, our functions are
well defined and continuous, therefore they admits a primitive and we can see that(

2

5
z

5
2

)′

= z
3
2 ;(

3

7
z

7
3

)′

= z
4
3 ;

(zz)′ = zz(log(z) + 1).

(2.38)
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So we have∫
Cρ=2

H(z)dz =

∫
Cρ=2

z
3
2dz +

∫
Cρ=2

z
4
3dz +

∫
Cρ=2

zz(log(z) + 1)dz =

= lim
ϵ→0

(∫
Cϵ

ρ=2

z
3
2dz +

∫
Cϵ

ρ=2

z
4
3dz +

∫
Cϵ

ρ=2

zz(log(z) + 1)dz

)
=

= lim
ϵ→0

(
2

5
z

5
2

∣∣∣∣z=2ei(π−ϵ)

z=2ei(−π+ϵ)

+
3

7
z

7
3

∣∣∣∣z=2ei(π−ϵ)

z=2ei(−π+ϵ)

+ zz
∣∣∣∣z=2ei(π−ϵ)

z=2ei(−π+ϵ)

)
=

= lim
ϵ→0

(
2

5
2

5
2

(
ei

5
2
(π−ϵ) − ei

5
2
(−π+ϵ)

))
+

+ lim
ϵ→0

(
3

7
2

7
3

(
ei

7
3
(π−ϵ) − ei

7
3
(−π+ϵ)

))
+

+ lim
ϵ→0

(
e2e

i(π−ϵ)(log(2)+i(π−ϵ)) − e2e
i(−π+ϵ)(log(2)+i(−π+ϵ))

)

(2.39)

where we have used the limit of ϵ → 0 since we have to be careful on the branch cut.
Now we need some algebra:

lim
ϵ→0

(
2

5
2

5
2

(
ei

5
2
(π−ϵ) − ei

5
2
(−π+ϵ)

))
= lim

ϵ→0

(
4i

5
2

5
2 sin

(
5

2
(π − ϵ)

))
=

=
4i

5
2

5
2 sin

(
5

2
π

)
=

4i

5
2

5
2 ;

(2.40)

lim
ϵ→0

(
3

7
2

7
3

(
ei

7
3
(π−ϵ) − ei

7
3
(−π+ϵ)

))
= lim

ϵ→0

(
6i

7
2

7
3 sin

(
7

3
(π − ϵ)

))
=

=
6i

7
2

7
3 sin

(
7

3
π

)
=

3i
√
3

7
2

7
3 ;

(2.41)

lim
ϵ→0

(
e2e

i(π−ϵ)(log(2)+i(π−ϵ)) − e2e
i(−π+ϵ)(log(2)+i(−π+ϵ))

)
= e2e

iπ(log(2)+iπ) − e2e
−iπ(log(2)−iπ) =

= e−2(log(2)+iπ) − e−2(log(2)−iπ) = e−2log(2)︸ ︷︷ ︸
= 1

4

[e−2iπ − e2iπ] = −2isin(2π)

4
= 0;

(2.42)
finally ∫

Cρ=2

H(z)dz =
4i

5
2

5
2 +

3i
√
3

7
2

7
3 . (2.43)

3 Series and residues

3.1 Taylor series
Assuming for the polyhydrome functions the principal branch, compute the Taylor
expansion of the following functions:
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• f(z) =
∫ z

0
ew

2
dw for z0 = 0;

• g(z) = (z + 1)log(1 + z2) for z0 = 0;

• h(z) = log
(
1+z
1−z

)
for z0 = 0;

• p(z) = log(z2) for z0 = 1,−1;

• q(z) = 1
sin(z)

for z0 = 0.

For the first case we have ew
2 ; we can expand it in Taylor series using the

expansion for the exponential and changing w → w2

ew =
∞∑
n=0

wn

n!
⇒ ew

2

=
∞∑
n=0

w2n

n!
. (3.1)

The radius of convergence of the series is all C since ew2 is an entire function, moreover
the integration path is contained in the convergence domain of the series and the
function is continuous (it is analytical) on this path; so we can exchange the integral
and the sum. We get

f(z) =
∞∑
n=0

∫ z

0

w2n

n!
=

∞∑
n=0

1

n!

w2n+1

2n+ 1

∣∣∣∣z
0

=
z2n+1

(2n+ 1)n!
. (3.2)

Function g(z) is not analytical and the Taylor expansion it is possible only in the
analytical domain, so let us find it. As usual we impose the equation (for the principal
branch)

1 + z2 = −t, t ≥ 0, (3.3)

whose solutions are
z = ±

√
−t− 1 = ±i

√
1 + t, t ≥ 0. (3.4)

The function is analytical in C \ (−∞,−1] ∪ [1,+∞); therefore Taylor expansion
exists in a circle of radius R < 1 centered in z0 = 0. Using the Taylor expansion for
the logarithm we get

g(z) = (z + 1)
∞∑
n=1

(−1)n+1

n
z2n =

∞∑
n=1

(−1)n+1

n
z2n+1 +

∞∑
n=1

(−1)n+1

n
z2n. (3.5)

Let us now study function h(z), again this is analytical in C minus the se given by
the solution of

1 + z

1− z
= −t t ≥ 0 ⇒ 1 + z = −t+ zt ⇒ z − zt = −t− 1 ⇒ z =

1 + t

t− 1
t ≥ 0; (3.6)

this equation represents the real semiaxis (−∞,−1] if t ∈ (0, 1−) and [1,+∞) if
t ∈ (1+,∞); the function is analytic in C \ {(−∞,−1] ∪ [1,+∞)}. Therefore Taylor
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expansion is possible only in z0 = 0 and with convergence radius R = 1; in this region
we have

d

dz
log

(
1 + z

1− z

)
=

1− z

1 + z

(1− z + 1 + z)

(1− z)2
=

2

(1 + z)(1− z)
=

2

1− z2
= 2

∞∑
n=0

z2n;

(3.7)
where we used the geometric series representation. So

log

(
1 + z

1− z

)
= log

(
1 + z

1− z

)
− log

(
1 + 0

1− 0

)
︸ ︷︷ ︸

=0

=

∫ z

0

d

dw
log

(
1 + w

1− w

)
dw =

= 2

∫ z

0

∞∑
n=0

w2ndw = 2
∞∑
n=0

w2n+1

2n+ 1

∣∣∣∣z
0

= 2
∞∑
n=0

z2n+1

2n+ 1
.

(3.8)

The hypothesis under which we can exchange the integral and sum are obviously
satisfied since the path we consider is in the ball B1(0) (otherwise the series we have
got does not converge) and the function is analytical in this ball.
Consider now function p(z), as usual we have to solve

z2 = −t, t ≥ 0, (3.9)

solutions are
z = ±i

√
t, t ≥ 0 (3.10)

which represent the whole imaginary axis and the function is analytic in C \ {Re(z) =

0}. If we center the expansion in z0 = −1, 1 the maximum radius of convergence is
R = 1 (otherwise we hit the imaginary axis where the function is not analytic). Note
that (in the analyticity domain)

d

dz
log(z2) =

2

z
=

{
−2

−z+1−1
= −2 1

1−(z+1)
useful if z + 1 < 1

2
z+1−1

= 2 1
1+(z−1)

useful if z − 1 < 1
(3.11)

we have for |z + 1| < 1 (expansion centered in z0 = −1)

log(z2)− log((−1)2)︸ ︷︷ ︸
=0

=

∫ z

−1

2

w
dw = −2

∫ z

−1

1

1− (w + 1)︸ ︷︷ ︸
<1

= −2

∫ z

−1

∞∑
k=0

(w + 1)ndw =

= −2
∞∑
k=0

∫ z

−1

(w + 1)kdw = −2
∞∑
k=0

(z + 1)k+1

k + 1
;

(3.12)
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while for |z − 1| < 1 (expansion centered in z0 = 1)

log(z2)− log((1)2)︸ ︷︷ ︸
=0

=

∫ z

1

2

w
dw = 2

∫ z

1

1

1 + (w − 1)︸ ︷︷ ︸
<1

= 2

∫ z

1

∞∑
k=0

(−1)k(w − 1)kdw =

= 2
∞∑
k=0

(−1)k
∫ z

1

(w − 1)kdw = 2
∞∑
k=0

(−1)k
(z − 1)k+1

k + 1
.

(3.13)
The last function seems easy but we need to pay attention. Fist of all we note that
the function is analytic in C \ {z ∈ C|z = kπ, k ∈ Z}, therefore the Taylor expansion
in z0 = 0 has radius R = π; in general the expansion around z = z0 ̸= kπ with k ∈ Z
has radius R = π. Let us use the finite expansion method:

1

sin(z)
=

1

z − z3

3
+ z5

5!
− z7

7!
+ ...

=
1

z

1

1− ( z
2

3!
− z4

5!
+ z6

7!
+ ...)

=

=
1

z

[
1 +

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)
+

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)2

+ ...

]
=

=
1

z

[
1 +

z2

3!
− z4

5!
+

z4

3!3!
+

z6

7!
− 2

z6

3!5!
+

z6

3!3!
+ ...

]
=

=
1

z
+

1

6
z +

7

360
z3 + ...

(3.14)

note that we used 1
1−h(z)

=
∑∞

0 hn(z) that holds if h(z) < 1 which is satisfied in this
kind of expansions.

3.2 Laurent series
Assuming for the polyhydrome functions the principal branch, compute the Laurent
expansion of the following functions:

• f(z) = 1
(z(1−z))2

for z0 = 0;

• g(z) = 3+z
z3+2z2

for z0 = 0;

• p(z) =
(

1
z2sinh(z)

)′
|z0=0;

• q(z) = 1
zsin(z)

for z0 = 0.

Let us begin with f(z); this function has singularities in z = 0 and z = 1 therefore
the annular regions where the function is analytic are A(0, 0, 1) and A(0, 1,∞). In
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the first ring we have

1

(z(1− z))2
=

1

z2
1

(1− z)2
=

1

z2
d

dz

(
1

1− z︸︷︷︸
<1

)
=

1

z2
d

dz

( ∞∑
n=0

zn
)

=
1

z2

∞∑
n=0

d

dz
zn =

=
1

z2

∞∑
n=1

nzn−1 =
∞∑
n=1

nzn−3;

(3.15)
while in the second ring we have to rename the variable, indeed using w = 1

z
we have

that |w| < 1 (we are in the ring A(0, 1,∞))

1

(z(1− z))2
=

w2

(1− 1
w
)2

=
w2

(w−1
w

)2
=

w4

(1− w)2
= w4 d

dw

(
1

1− w︸︷︷︸
<1

)
=

= w4 d

dw

( ∞∑
n=0

wn

)
= w4

∞∑
n=0

d

dw
wn = w4

∞∑
n=1

nwn−1 =
∞∑
n=1

nwn+3 =

=
∞∑
n=1

nz3−n.

(3.16)
Note that we can exchange the sums and the derivatives because we are in the analytic
domain. Moreover, fundamental for this kind of exercises are the expansions

1

1− z
=

∞∑
n=0

zn,
1

1 + z
=

∞∑
n=0

(−1)nzn for|z| < 1 (3.17)

Function g(z) has singularities in z = 0 and z = 2 so we can expand in Laurent series
in the rings A(0, 0, 2) and A(0, 2,∞). In the first ring we have

3 + z

z3 + 2z2
=

3 + z

2z2
(
1 +

z

2︸︷︷︸
<1

) =
3 + z

2z2
1

1− z
2

=
3 + z

2z2

∞∑
n=0

(−1)n
(
z

2

)n

=

=
∞∑
n=0

(−1)n
(3 + z)

2z2

(
z

2

)n

=
∞∑
n=0

(−1)n
3

2n+1
zn−2 +

∞∑
n=0

(−1)n
1

2n+1
zn−1;

(3.18)
while in the ring A(0, 2,∞) we have

3 + z

z3 + 2z2
=

3 + z

z3
(
1 +

2

z︸︷︷︸
<1

) =
3 + z

z3
1

1 + 2
z

=
3 + z

z3

∞∑
n=0

(−1)n
(
2

z

)n

=

=
∞∑
n=0

(−1)n3
2n

zn+3
+

∞∑
n=0

(−1)n
2n

zn+2
.

(3.19)
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For function p(z) we need to expand using the finite expansion method function
1

z2sinh(z)
; we have

1

z2sinh(z)
=

1

z2
1

z + z3

3!
+ z5

5!
+ z7

7!
+ ...

=
1

z3
1

1 + z2

3!
+ z4

5!
+ z6

7!
+ ...

=

=
1

z3

[
1−

(
z2

3!
+

z4

5!
+

z6

7!
+ ...

)
+

(
z2

3!
+

z4

5!
+

z6

7!
+ ...

)2

− ...

]
=

=
1

z3

[
1− z2

3!
− z4

5!
+

z4

3!3!
− z6

7!
+ 2

z6

3!5!
+ ...

]
=

=
1

z3
− 1

6z
+

7

360
z + ...

(3.20)

and taking the derivative we get(
1

z2sinh(z)

)′

= − 3

z4
− 1

3z2
+

7

360
+ ... (3.21)

For function q(z) we can use the expansion find before,

1

sin(z)
=

1

z − z3

3
+ z5

5!
− z7

7!
+ ...

=
1

z

1

1− ( z
2

3!
− z4

5!
+ z6

7!
+ ...)

=

=
1

z

[
1 +

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)
+

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)2

+ ...

]
=

=
1

z

[
1 +

z2

3!
− z4

5!
+

z4

3!3!
+

z6

7!
− 2

z6

3!5!
+ ...

]
=

=
1

z
+

1

6
z +

7

360
z3 + ...

(3.22)

so we have

1

zsin(z)
=

1

z

1

z − z3

3
+ z5

5!
− z7

7!
+ ...

=
1

z

1

z

1

1− ( z
2

3!
− z4

5!
+ z6

7!
+ ...)

=

=
1

z

1

z

[
1 +

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)
+

(
z2

3!
− z4

5!
+

z6

7!
+ ...

)2

+ ...

]
=

=
1

z

1

z

[
1 +

z2

3!
− z4

5!
+

z4

3!3!
+

z6

7!
− 2

z6

3!5!
+ ...

]
=

=
1

z2
+

1

6
+

7

360
z2 + ...

(3.23)

3.3 Residues
Determine the nature of the singularities and compute, when possible, the residues of
the following functions:

• a generic function q(z) with a pole of order m;
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• f(z) = 1
(ez−1)sin(z)

;

• l(z) = 3+z
z3+2z2

;

• g(z) = zlog(z);

• h(z) = 1
log(1+z)

;

• p(z) = ez

z2sin(z)
.

The first case is a useful formula to compute residues in the case of polar singularities.
Suppose the function has a pole of order m in z = z0; there exist ϵ > 0 such that the
Laurent expansion exists (the negative part end with a monomial (z − z0)

−m)

q(z) =
∞∑
k=0

ak(z − z0)
k +

b1
z − z0

+
b2

(z − z0)2
+ ...+

bm
(z − z0)m

; (3.24)

if we multiply both member by (z− z0)
m in order to isolate the coefficients bm we get

(z − z0)
mq(z) =

∞∑
k=0

ak(z − z0)
k+m + b1(z − z0)

m−1 + b2(z − z0)
m−2 + ...+ bm. (3.25)

We need to compute b1 so we take m − 1 derivatives with respect to z in order to
remove the z-dependence in the term with b1:

dm−1

dzm−1
[(z−z0)

mq(z)] =
∞∑
k=0

ak(k+m)(k+m−1)...(k+2)(z−z0)
k+1+b1(m−1)(m−2)...1.

(3.26)
It is now easy to see that we need to multiply by 1

(m−1)!
and to take the limit

b1 = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
[(z − z0)

mq(z)] (3.27)

and this is the residue of a pole of order m.
Let us consider now function f(z), we can Taylor expand

f(z) =
1

(z + z2

2
+ z3

6
+ ...)(z − z3

6
+ ...)

=
1

z2
1

(1 + z
2
+ z2

6
+ ...)(1− z2

6
+ ...)

=
f̃(z)

z2
;

(3.28)
recall that if we have a function with a polar singularity of order m we can always
write

f(z) =
f̃(z)

(z − z0)m
(3.29)

and

Resz=z0f(z) =
f̃(z0)

(m−1)

(m− 1)!
. (3.30)
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In our case, we have a pole in z0 = 0 of order m = 2 and therefore

Resz=0f(z) = f̃(0)(1) =

= −
1
2
+ z

3
+ ...

(1 + z
2
+ z2

6
+ ...)2(1− z2

6
+ ...)

−
− z

3
+ ...

(1 + z
2
+ z2

6
+ ...)(1− z2

6
+ ...)2

∣∣∣∣
z=0

=

= −1

2
(3.31)

Function l(z) is similar to the previous case, indeed for the singularity in z = 0 (doble
pole)

l(z) =
3 + z

z3 + 2z2
=

1

z2
3 + z

2 + z
=

l̃0(z)

z2
, (3.32)

so
Resz=0l(z) = l̃0(0)

(1) =
2 + z − 3− z

(2 + z)2

∣∣∣∣
z=0

= −1

4
; (3.33)

while for the singularity in z = −2 (simple pole)

l(z) =
3 + z

z3 + 2z2
=

1

2 + z

3 + z

z2
, (3.34)

so
Resz=−2l(z) = lim

z→−2
(z + 2)

1

2 + z

3 + z

z2
=

1

4
. (3.35)

Function g(z) is tricky, indeed since z = 0 is not an isolated singularity there is no
ring where a Laurent expansion is possible and no residue exists.
Function h(z) can be expanded in Laurent series using the Taylor expansion log(1 +

z) =
∑∞

n=1
(−1)n

n
zn that converge for |z| < 1; therefore

1

log(1 + z)
=

1

z − z2

2
+ z3

3
+ ...

=
1

z

1

1 + (− z
2
+ z2

3
+ ...)

=

=
1

z

[
1−

(
− z

2
+

z2

3
+ ...

)
+

(
− z

2
+

z2

3
+ ...

)2

+ ...

]
=

=
1

z
+

1

2
− z

12
+

z2

24
+ ...,

(3.36)

and so z = 0 is a simple pole and the residues (the coefficient of z−1) is simply
Resz=0

1
log(1+z)

= 1.
Let us consider the last case. We recall that if we have a function p(z) = p1(z)

p2(z)
with

p1(z) and p2(z) analytic in z = z0 and if p1(z0) ̸= 0, p′2(z0) ̸= 0 then if z0 is a simple
pole we have

Resz=z0p(z) =
p1(z0)

p′2(z0)
. (3.37)

In our case we have a series of simple poles in zn = nπ with n ∈ Z \ {0} and a pole
of order m = 3 in z0 = 0. Therefore, since in our case we have

p1(z) = ez, p2(z) = z2sin(z) ⇒ p′2(z) = 2zsin(z) + z2cos(z) (3.38)
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and p1(z) and p′2(z) are analytical in z = zn we can compute the residue as

Resz=znp(z) =
enπ

n2π2(−1)n
= (−1)n

enπ

n2π2
. (3.39)

To compute the residue in z0 = 0 we need to compute the Laurent expansion of the
function; we have

p(z) =
1 + z + z2

2
+ z3

6
+ ...

z2(z − z3

6
+ ...)

=
1

z3
1 + z + z2

2
+ z3

6
+ ...

1− ( z
2

6
+ ...)

=

=
1

z3

(
1 + z +

z2

2
+

z3

6
+ ...

)[
1 +

(
z2

6
+ ...

)
+

(
z2

6
+ ...

)2

+ ...

]
=

=
1

z3
+

1

z2
+

1

2z
+

1

6z
+

1

6
+ ... =

1

z3
+

1

z2
+

2

3z
+

1

6
+ ...

(3.40)

where the last ... stands for positive powers of z. In the end

Resz=0p(z) =
2

3
. (3.41)

4 Residues integral

4.1 Integration using residues theorem
Solve the following integrals using the residues theorem.

• I =
∫ 2π

0
dθ

1+acos(θ)
−1 < a < 1;

• II =
∫ +∞
−∞

xdx
(x2+1)(x2+2x+2)

;

• III = PV
∫ +∞
−∞

xdx
x3−1

;

• IV =
∫ +∞
−∞

eaxdx
cosh(x)

−1 < a < 1;

• V =
∫ +∞
−∞

xsin(x)
x2+1

.

Let us consider the first integral, we know that∫ 2π

0

f(cos(θ), sin(θ))dθ =

∫ 2π

0

f

(
eiθ + e−iθ

2
,
eiθ − e−iθ

2i

)
ieiθ

ieiθ
dθ =

=

∫ 2π

0

f

(
γ(θ) + γ(θ)−1

2
,
γ(θ) + γ(θ)−1

2i

)
γ′(θ)

iγ(θ)
dθ =

=

∫
γ

(
z + z−1

2
,
z + z−1

2i

)
dz

iz

(4.1)
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where γ(θ) = eiθ with 0 ≤ θ ≤ 2π. Therefore,∫ 2π

0

dθ

1 + acos(θ)
=

∫
γ

1

1 + a( z+z−1

2
)

dz

iz
=

2

ia

∫
γ

1

z2 + 2z
a
+ 1

dz; (4.2)

now

z2 +
2z

a
+ 1 = 0 ⇒ z± =

− 2
a
±
√

4
a2

− 4

2
=

− 2
a
± 2

a

√
1− a2

2
=

−1±
√
1− a2

a
, (4.3)

and we note that |z−| > 1 and |z+| < 1. So only z+ is inside the circumference γ and
this is a simple pole; therefore for residues theorem we have

2

ia

∫
γ

1

z2 + 2z
a
+ 1

dz =
2

ia
2πiResz=z+

1

z2 + 2z
a
+ 1

=
4π

a
Resz=z+

1

(z − z+)(z − z−)
=

=
4π

a
lim
z→z+

(z − z+)
1

(z − z+)(z − z−)
=

4π

a

1

z+ − z−
=

2π√
1− a2

.

(4.4)
For case II we can use directly residues integral since f(z) = x

(x2+1)(x2+2x+2)
has only

polar singularities in z2 + 1 = 0 ⇒ z± = ±i and z2 + 2z + 2 = 0 ⇒ z′± = −2±
√
4−8

2
=

−1± i with residues given by

Resz=z±f(z) = limz→z±(z − z±)
z

(z − z+)(z − z−)(z2 + 2z + 2)
=

=
z

(z − (±i))(z2 + 2z + 2)

∣∣∣∣
z=z±

=

=
±i

±2i(−1± 2i+ 2)
=

1∓ 2i

10

(4.5)

and
Resz=z′±

f(z) = limz→z′±
(z − z′±)

z

(z2 + 1)(z − z′−)(z − z′+)
=

=
z

(z2 + 1)(z − (−1∓ i))

∣∣∣∣
z=z′±

=

=
−1± i

(1∓ 2i)(±2i)
=

−1± 3i

10
.

(4.6)

Choosing as path of integration the semicircumference in the upper half plane with
radius R, we enclose only z+ and z′+, so in the limit R → ∞ we get∫ +∞

−∞

xdx

(x2 + 1)(x2 + 2x+ 2)
= 2πi

(
1− 2i

10
+

−1 + 3i

10

)
= 2πi

i

10
= −π

5
. (4.7)

Note that for a rational function f(z) = Pn(x)
Qm(x)

where Pn(x) ans Qn(x) are polynomial
of degree n and m (with m ≥ n + 1) respectively we get that the integral on the
semicircumference goes to zero when R → ∞.
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Let us now consider case III; the function has pole in

z3 − 1 = 0 ⇒ zk =
3
√
1 = e

i2kπ
3 , k = 0, 1, 2; (4.8)

we note that z0 is a real pole (this is why the principal value). Let us choose the
semicircumference in the upper half plane with radius R plus a little circumference
of radius r around z0; this path encloses the simple pole in z = z1 whose residues is
given by

Resz=z1f(z) =
p(z1)

q′(z1)
=

z

3z2

∣∣∣∣
z=z1

=
e

i2π
3

3e
i4π
3

(4.9)

where we write f(z) = p(z)
q(z)

with p(z) = z and q(z) = z3 − 1. In the limit R → ∞ the
integral on the semicircumference in the upper half plane goes to zero (like in case
II) while in the limit r → 0 we have for a generic function g(z) that

lim
r→0

∫
γ±
r

g(z)dz = ±iπResz=z′g(z), (4.10)

where γ±
r (θ) = z′ + re±iθ where −π ≤ θ ≤ 0 and z′ is the simple pole of the function

g(z). In our case we have γ−
r = z0 + e−iθ and so

lim
r→0

∫
γ−
r

f(z)dz = iπResz=z0f(z) = iπ
p(z0)

q′(z0)
= iπ

1

3
. (4.11)

in the end

PV

∫ +∞

−∞

xdx

x3 − 1
= 2πiResz=z1f(z)− iπResz=z0f(z) =

iπ

3

[
2e−

2iπ
3 − 1

]
. (4.12)

Let us consider case IV . Function f(z) = eaz

cosh(z)
has polar singularity in

cosh(z) = cosh(x+ iy) = cosh(x)cosh(iy) + sinh(x)sinh(iy) =

= cosh(x)cos(y) + isinh(x)sin(y) = 0 ⇒ y = k
π

2
∪ x = 0 with k ∈ Z \ {0};

(4.13)
let us call these points zk. We consider as integration path the square given by

γ1(x) = x −R ≤ x ≤ R;

γ2(y) = R + iy 0 ≤ y ≤ π;

γ3(x) = x+ iπ R ≤ x ≤ −R;

γ4(y) = −R + iy π ≤ y ≤ 0.

(4.14)

The integral on γ1(x) is ∫ R

−R

eax

cosh(x)
dx (4.15)
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that is our integral when R → ∞; the integral on γ2(y) is∫ π

0

ea(R+iy)

cosh(R + iy)
dy, (4.16)

so ∣∣∣∣ ∫ π

0

ea(R+iy)

cosh(R + iy)
dy

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ ea(R+iy)

cosh(R + iy)

∣∣∣∣dy ≤ π
eaR

1
2
(eR + e−R)

→ 0, (4.17)

for R → ∞ and a < 1; moreover we used cosh(R+ iπ) = −cosh(R). integral on γ3(x)

is ∫ −R

R

ea(x+iπ)

cosh(x+ iπ)dx
= eiaπ

∫ R

−R

eax

cosh(x)dx
(4.18)

we used again cosh(x+ iπ) = −cosh(x); this is our integral multiplied by eiaπ when
R → ∞; the last integral is ∫ 0

π

ea(−R+iy)

cosh(−R + iy)
dy, (4.19)

so∣∣∣∣− ∫ π

0

ea(−R+iy)

cosh(−R + iy)
dy

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ ea(−R+iy)

cosh(−R + iy)

∣∣∣∣dy ≤ π
e−aR

1
2
(eR + e−R)

→ 0, (4.20)

for R → ∞ and a > −1. Therefore∫ +∞

−∞

eax

cosh(x)
dx(1 + eiaπ) = 2πiResz=z1 = 2πi

eaz

sinh(z)

∣∣∣∣
z=iπ

2

= 2πi
eia

π
2

sinh
(iπ
2

)
︸ ︷︷ ︸
=isin(π

2
)=i

(4.21)

in the end ∫ +∞

−∞

eax

cosh(x)
dx =

2πeia
π
2

1 + eiaπ
. (4.22)

Let us consider the last case. Consider function f(z) = zeiz

z2+1
, this has simple pole in

z = ±i, so consider the path given by the semicircumference in the upper half plane
with radius R plus the interval from −R to R. This path encloses the pole in z = i

but for Jordan’s lemma the integral on the semicircumference in the upper half plane
is zero in the limit R → ∞. Therefore∫ +∞

−∞

xsin(x)

x2 + 1
=Im

∫ +∞

−∞

zeiz

z2 + 1
= Im

(
2πiResz=if(z)

)
=

= Im

(
2πi lim

z→i
(z − i)

zeiz

(z − i)(z + i)

)
= Im

(
2πi

ie−1

2i

)
=

π

e
.

(4.23)
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5 Asymptotic developments and integral estimates

5.1 Integration by parts
Compute the asymptotic development up to second order and estimates the rest for
the following integrals:

1.
∫ +∞
0

e−xtt3dt;

2.
∫ 5

2
eixtlog(t)dt

Let us consider the first integral; this is of Laplace type therefore we know that∫ +∞

0

e−xtt3dt =
n−1∑
k=0

(t2)(k)(0)

xk+1
+

1

xk

∫ ∞

0

e−xt(t3)(n)(t)dt (5.1)

where the last integral it the rest. In our case we have∫ +∞

0

e−xtt3dt ∼
1∑

k=0

(t2)(k)(0)

xk+1
+

1

xn

∫ ∞

0

e−xt(t2)(2)(t)dt; (5.2)

we have (t2)(0)(t) = t2, (t2)(1)(t) = 2t, (t2)(2)(t) = 2 so∫ +∞

0

eixtt3dt ∼ 2

x2

∫ ∞

0

e−xtdt = − 2

x2

1

x
e−xt

∣∣∣∣+∞

0

=
2

x3
. (5.3)

The second case in instead of Fourier type, therefore∫ 5

2

eixtlog(t)dt =

=
n−1∑
k=0

ik+1

xk + 1
[e2ix(log(t))(k)(a)− e5ix(log(t))(k)(b)] +

in

xn

∫ 5

2

eixt(log(t))(n)(t)dt

(5.4)

In our case∫ 5

2

eixtlog(t)dt ∼

∼
1∑

k=0

ik+1

xk + 1
[e2ix(log(t))(k)(a)− e5ix(log(t))(k)(b)]− 1

x2

∫ 5

2

eixt(log(t))(2)(t)dt,

(5.5)
and (log(t))(0)(t) = log(t), (log(t))(1)(t) = 1

t
, (log(t))(2)(t) = − 1

t2
; therefore∫ 5

2

eixtlog(t)dt ∼

∼ i

x
[e2ixlog(2)− e5ixlog(5)]− 1

x2
[e2ix

1

2
− e5ix

1

5
] +

1

x2

∫ 5

2

eixt
1

t2
dt.

(5.6)
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5.2 Integrals estimation
Estimates the following integrals:

1.
∫ 2π

0
ex|sin(t)|tdt;

2.
∫ 10

1
eix(t

3−4t)log(t)dt

3.
∫ 3

2
π

π
2

eixcos(t)
√
tdt

4.
∫
K
e−tcos(x)y 1

x+y
dxdy with K = [0, π]× [−1, 1]

Let us recall that∫ b

a

exf(t)g(t)dt ∼
m∑
j=1

√
−2π

xf ′′(tj)
g(tj)e

xf(tj) (5.7)

where tj are the maximizer of the function f(t) (so f ′(tj) = 0 and f ′′(tj) < 0) and∫ b

a

eixϕ(t)g(t)dt ∼
m∑
j=1

√
−2π

x|ϕ′′(tj)|
g(tj)e

ixϕ(tj)+sgn(ϕ′′(tj))i
π
4 (5.8)

where tj are the stationary points of the function ϕ(t) (so f ′(tj) = 0). This formulae
hold also in higher dimensions using the obvious multidimensional gaussian integral.

The first case is a Laplace type integral and the function |sin(x)| in the range
[0, 2π] has a maximum in x = π

2
and x = 3π

2
therefore using Laplace method/approximation

decomposing the integration interval into two subintervals (for example [0, π] and
[π, 2π]) we have∫ π

0

exsin(t)tdt ∼
√

−2π

x((sin(x))′′|x=π
2
)

π

2
exsin(

π
2
) =

√
2π

x

π

2
ex (5.9)

and ∫ 2π

π

e−xsin(t)tdt ∼
√

−2π

x((−sin(x))′′|x= 3π
2
)

3π

2
e−xsin( 3π

2
) =

√
2π

x

3π

2
ex. (5.10)

Therefore ∫ 2π

0

ex|sin(t)|tdt =

√
2π

x
ex +

√
2π

x

3π

2
ex =

√
π3

2x
[ex + 3ex]. (5.11)

The second and the third integrals are of Fourier type with

ϕ1(t) = t3 − 4t ⇒ ϕ′
1(t) = 3t2 − 4 = 0 ⇒ t0 =

2√
3

(5.12)
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and
ϕ2(t) = cos(t) ⇒ ϕ′

2(t) = −sin(t) = 0 ⇒ tk = kπ with k ∈ Z. (5.13)

Therefore the integrals can be estimated using stationary phase method:∫ 10

1

eix(t
3−4t)log(t)dt ∼

√
2π

x|ϕ′′
1(t0)|

log(t0)e
ixϕ1(t0)+sgn(ϕ′′

1 (t0))
π
4
i =

=

√
2π

√
3

12x
log

(
2√
3

)
e
i(− 16

3
√
3
x+π

4
)
,

(5.14)

and (note that only t0 = π is in the integration interval)∫ 3
2
π

π
2

eixcos(t)
√
tdt ∼

√
2π

x|ϕ′′
2(t0)|

√
t0e

ixϕ2(t0)+sgn(ϕ′′
2 (t0))

π
4
i =

√
2π

x

√
πei(−x+π

4
) (5.15)

The fourth case is again a Laplace type integral; function f(x, y) = −ycos(x) has
gradient given by

∇f(x, y) = (ysin(x),−cos(x)) (5.16)

so
∇f(x, y) = (ysin(x),−cos(x)) = 0 ⇒ y = 0 ∪ x = k

π

2
(5.17)

and the Hessian is

Hf(x, y) =

[
ycos(x) sin(x)

sin(x) 0

]
⇒ det(Hf(x, y)) = −sin2(x) < 0 for x =

π

2
. (5.18)

Therefore we have ∫ π

0

∫ 1

−1

e−tcos(x)y 1

x+ y
dydx ∼ 2π

t

2

π

1√
1
=

4

t
(5.19)

6 Distributions

6.1 Derivatives of distributions
Find the general rule for the derivatives (in the sense of the distributions) of the
following functions and compute it on the indicated test function

• (e−x2
)′ for ϕ(x) = 3χ[−1,1](x) and ϕ(x) = 2e−xχ[0,+∞);

• |t− 2|′′ for ϕ(t) = h(t) =

{
t3 if t ∈ [−2, 2];

0 otherwise
;
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Let us recall that given a function f(t) we can associate (thanks to Riesz repre-
sentation theorem) the object

f(ϕ) =

∫ +∞

−∞
f(t)ϕ(t)dt (6.1)

where ϕ(t) is a test function namely, these are functions in a functional space whose
dual is the space of distribution for example in C∞

c or in S, this object is a linear
functional and it is our distribution. The derivatives in the sense of distribution can
be computed as

f (n)(ϕ) =

∫ +∞

−∞
f (n)(t)ϕ(t)dt = (−1)n

∫ +∞

−∞
ϕ(n)(t)f(t)dt = (−1)nf(ϕ(n)), (6.2)

∀ϕ(t) ∈ C∞
c ,S and where in the second passage we integrate by part n times.

So for the first case we have

(e−x2

)′(ϕ) =− (e−x2

)(ϕ′) = −
∫ +∞

−∞
e−x2

ϕ′(x)dx =

= − e−x2

ϕ(x)

∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
2xe−x2

ϕ(x)dx;
(6.3)

so we have

(e−x2

)′(3χ[−1,1]) = −3

∫ 1

−1

2xe−x2

dx = 0 (6.4)

and

(e−x2

)′(2e−xχ[0,+∞)) = −2

∫ +∞

0

2xe−x2−xdx = 4

∫ +∞

0

∂

∂t

(
e−x2−tx

)∣∣∣∣
t=1

=

= 4
∂

∂t

(∫ +∞

0

e−x2−tx

)∣∣∣∣
t=1

= 4
∂

∂t

(√
π

2
e

t2

4 Erfc

(
t

2

))∣∣∣∣
t=1

=

=

(√
πe

t2

4 tErfc

(
t

2

)
− 2

)∣∣∣∣
t=1

=
√
πe

1
4Rfrc

(
1

2

)
− 2.

(6.5)
For the second case, by definition we have

(|t− 2|)′′(ϕ) =(|t− 2|)(ϕ′′) =

∫ +∞

−∞
|t− 2|ϕ′′(t)dt =

=

∫ 2

−∞
(2− t)ϕ′′(t) +

∫ +∞

2

(t− 2)ϕ′′(t) =

= (2− t)ϕ′(t)

∣∣∣∣2
−∞︸ ︷︷ ︸

=0

+

∫ 2

−∞
ϕ′(t)dt+ (t− 2)ϕ′(t)

∣∣∣∣+∞

2︸ ︷︷ ︸
=0

−
∫ +∞

2

ϕ′(t)dt

(6.6)
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where we integrate by parts using in the first integral f = 2− t, g′ = ϕ′′ and in the
second integral f = t− 2, g′ = ϕ′′. So we have

(|t− 2|)′′(h) =
∫ 2

−2

3t2dt = t3
∣∣∣∣+2

−2

= 16 (6.7)

6.2 The Dirac delta
Compute the following integrals:

• I =
∫ +∞
−∞

(
3δ(x− 1) + 2δ(x)

)
e−x2+3(x−2)dx;

• II =
∫ +∞
−∞ 2δ

(
x−3
2

)
x3dx;

• III =
∫ 4

−4
(t− 2)2[δ′

(
− t

3
+ 1

2

)
+ δ(x− 8)]dt;

• IV =
∫ 0

−∞ xδ(x3 + 1)dx;

Let us start with some recalling; the fundamental property of the Dirac delta
distribution is ∫ a

−a

f(x)δ(x− x0)dx =

{
f(x0) if x0 ∈ [−a, a];

0 if x0 /∈ [−a, a];
(6.8)

this is due to the very definition of distribution as linear functional from a space to
its dual. Moreover from the definition of distributional derivative follows that∫ a

−a

f(x)δ(n)(x− x0)dx = (−1)n
∫ a

−a

f (n)(x)δ(x− x0)dx =

=

{
(−1)nf (n)(x0) if x0 ∈ [−a, a];

0 if x0 /∈ [−a, a].

(6.9)

Other important and useful properties are (expressed with abuse of language since
these properties are true only when we think the delta as a linear functional):

• δ(ax) = δ(x)
|a| ;

• δ(f(x)) =
∑

i
δ(x−xi)
|f ′(xi)| .

where xi are the zeroes of the function f(x). Now we can start. In case I we have∫ +∞

−∞
(3δ(x−1)+2δ(x))e−x2+3(x−2)dx = 3e−12+3(1−2)+2e−02+3(0−2) =

3

e4
+

2

e6
. (6.10)

Case II can be solved using rescaling property of delta distribution, indeed∫ +∞

−∞
2δ

(
x− 3

2

)
x3dx = 2

∫ +∞

−∞
2δ(x− 3)x3dx = 433 = 108. (6.11)
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Case III is a little more complex; first of all note that since x = 8 /∈ [−4, 4] the second
piece does not play any role. Now using the definition of distributional derivatives we
get ∫ 4

−4

(t− 2)2δ′
(
− t

3
+

1

2

)
dt = −

∫ 4

−4

[
(t− 2)2

]′
δ

(
− t

3
+

1

2

)
dt, (6.12)

and using composition rule for delta distribution we can rewrite it as

δ

(
− t

3
+

1

2

)
=

δ
(
t− 3

2

)
| − 1

3
|

= 3δ

(
t− 3

2

)
(6.13)

since

− t

3
+

1

2
= 0 ⇒ t =

3

2
,

(
− t

3
+

1

2

)′

= −1

3
. (6.14)

In the end

−
∫ 4

−4

[
(t−2)2

]′
δ

(
− t

3
+
1

2

)
dt = −3

∫ 4

−4

[
(t−2)2

]′
δ

(
t−3

2

)
dt = −3

[
(t−2)2

]′∣∣∣∣
t= 3

2

= 3.

(6.15)
Case IV is similar, indeed

x3 + 1 = 0 ⇒ x = −1,

(
x3 + 1

)′

= 3x2; (6.16)

therefore ∫ 0

−∞
xδ(x3 + 1)dx =

∫ 0

−∞
x
δ(x+ 1)

|3|
= −1

3
. (6.17)

6.3 ODEs and weak solutions
Solve the following Cauchy problems:

1. xy′′(x)− 2y′(x) + (x+ 2
x
)y(x) = δ(x− π), y(π

2
) = y(3π

2
) = 0

2. xy′(x) + y(x) = δ(x− 2) + Θ(x− 3), y(1) = 1;

3. y′′′(x) + y′′(x)
x

− 2y′(x)
x2 + 2y(x)

x3 = 2δ(x− 2), y(1) = 1, y′(1) = y′′(1) = 0.

In general the solution of a ODE is given as y(x) = y0(x) + yp(x), where y0(x) is
the solution of the homogeneous equation while yp(x) is a particular solution of our
problem. Let us start with case 1. Let us massage the homogeneous equation

y′′0 −
2

x
y′0 +

x2 + 2

x2
y0 = 0 ⇒︸︷︷︸

y0(x)=e
∫ 1

xdxg(x)=xg(x)

(xg)′′ − 2

x
(xg)′ +

x2 + 2

x2
xg = 0 ⇒

⇒ g′ + g′ + xg′′ − 2

x
(g + xg′) +

x2 + 2

x
g = 0 ⇒ xg′′ +

(
− 2

x
+

x2 + 2

x

)
g = 0 ⇒

⇒ g′′ + g = 0;
(6.18)
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this is a simple harmonic oscillator and the solutions are sine and cosine. Therefore
g(x) = acos(x) + bsin(x) and

y0(x) = axcos(x) + bxsin(x). (6.19)

When x < π the equation is homogeneous and the solution is y0(x), while for x > π

something happens: since the second derivative has a Dirac delta behavior, we expect
that the first derivative has a Heaviside behavior and the function to be continuous
in the point π (obviously this is true in the sense of distribution and therefore we are
looking a weak or distributional solution). So we can write a modified solution after
x = π changing the coefficients but with the same functional form since for x > π

the equation is still homogeneous. Let us write the general solution before and after
x = π as {

yx<π(x) = a1xcos(x) + b1xsin(x) if x < π,

yx>π(x) = a2xcos(x) + b2xsin(x) if x > π
; (6.20)

and we need to impose continuity of the function and step singularity of 1
a(x0)

= 1
x0

= 1
π

of the first derivative (where a(x) is the coefficient of the highest derivative order
term of the equation). We have

yx<π(π
−) = yx>π(π

+) ⇒ a1 = a2 (6.21)

and

y′x>π(π
+)− y′x<π(π

−) =
1

π
⇒ −a2 − b2π + a1 + b1π =

1

π
⇒ b1 − b2 =

1

π2
. (6.22)

The general solution is thereforeyx<π(x) = a1xcos(x) + b1xsin(x) if x < π,

yx>π(x) = a1xcos(x) +

(
b1 − 1

π2

)
xsin(x) if x > π

(6.23)

and imposing the boundary conditions we get

y

(
π

2

)
= b1

π

2
= 0, y

(
3π

2

)
= −b1

3π

2
−
(
b1 −

1

π2

)
3π

2
= 0 (6.24)

but this system has no solution, therefore our Cauchy problem does not admit any
solution. Let us consider case 2, this is an Euler equation and the homogeneous
solution can be find in the form y0(x) = c1x

α:

xαxα−1 + xα = 0 ⇒ α + 1 = 0 (6.25)

and so α = −1 and y0(x) =
c1
x
. The Heaviside term enter in the game only when

x > 3 and here the function must be continuous, while the Dirac term makes the
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function discontinuous in x = 2. Let us consider first the Dirac term, the solution is
modified but the equation is still homogeneous; we write{

yx<2(x) =
c1
x

if x < 2,

yx>2(x) =
c2
x

if x > 2
; (6.26)

and we impose the discontinuity at x = 2

yx>2(2
+)− yx<2(2

−) =
1

2
⇒ c2

2
− c1

2
=

1

2
⇒ c2 = c1 + 1. (6.27)

Now the Heaviside term; for x > 3 the equation becomes

xy′(x) + y(x) = 1, (6.28)

the homogeneous solution is the same as before but now we have also a particular
solution. The simpler choice is yp(x) = 1 and the complete solution is yx>3(x) =

c3
x
+1

(while yx<3(x) = yx>2(x)) where c3 has to be find imposing continuity of the function
in x = 3,

yx<3(3
−) = yx>3(3

+) ⇒ c1 + 1

3
=

c3
3
+ 1 ⇒ c3 = c1 − 2. (6.29)

The general solution is therefore

y(x) =


c1
x

if x < 2,
c1
x

if 2 < x < 3,
c1−3
x

+ 1 if x > 3

; (6.30)

and imposing the initial condition we find

y(1) = c1 = 1; (6.31)

so

y(x) =


1
x

if x < 2,
2
x

if 2 < x < 3,

− 1
x
+ 1 if x > 3

; (6.32)

Case 3 is again an Euler equation, indeed, in the homogeneous case for x ̸= 2, we
have (searching a solution of the form y(x) = xα)

x3y′′′ + x2y′′ − 2xy′ + 2 = 0 ⇒ α(α− 1)(α− 2) + α(α− 1)− 2α + 2 = 0

⇒ (α− 1)[α(α− 2) + α− 2] = 0

⇒ (α− 1)(α− 2)[α + 1] = 0 ⇒ α1 = 1, α2 = 2, α3 = −1.
(6.33)

So the solution is
y(x) = a1x+ b1x

2 +
c1
x
. (6.34)
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Since there is a Dirac term, we expect a step discontinuity in the second derivative
and continuity in the function and it first derivative in x = 2; let us write the solution
for x > 2, here the equation is still homogeneous but we need to change the coefficents.
In the end we have {

yx<2(x) = a1x+ b1x
2 + c1

x
if x < 2,

yx>2(x) = a2x+ b2x
2 + c2

x
if x > 2

, (6.35)

and imposing continuity and discontinuity we get
yx<2(2

−) = yx>2(2
+) = 2a1 + 4b1 +

c1
2
= 2a2 + 4b2 +

c2
2
,

y′x<2(2
−) = y′x>2(2

+) = a1 + 4b1 − c1
4
= a2 + 4b2 − c2

4
,

y′′x>2(2
+)− y′′x<2(2

−) = 2b2 + 2 c2
8
− 2b1 − 2 c1

8
= 2

; (6.36)

instead of solve this linear system in general, we solve it using the boundary conditions

yx<2(1) = 1 ⇒ a1 + b1 + c1 = 1,

y′x<2(1) = 0 ⇒ a1 + 2b1 − c1 = 0,

y′′x<2(1) = 0 ⇒ +2b1 + 2c1 = 0,

(6.37)

whose solution is given by a1 = 1, b1 = −1
3
, c1 =

1
3
. Therefore we have

2− 4
3
+ 1

6
= 2a2 + 4b2 +

c2
2
,

1− 4
3
− 1

12
= a2 + 4b2 − c2

4
,

2
3
− 1

12
− 2b2 − 2 c2

8
= 2

; (6.38)

and so
a2 =

11

2
, a2 =

11

6
, c2 = 9. (6.39)

In the end the solution is

y(x) =

{
yx<2(x) = x+−x2

3
+ 1

3x
if x < 2,

yx>2(x) =
11x
2

+ 11x2

6
+ 9

x
if x > 2

. (6.40)

7 Finite dimensional linear spaces and euclidean
spaces

7.1 Matrices and invariant quantities
Given the following linear application compute the representative matrices and the
invariant quantities:

• g(x, y) = (5x− 10y, x− 2y) : R2 → R2;
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• h(x, y, z) = (−10y, x− y, x+ y + z) : R3 → R3;

To understand from which matrix function f(x, y) is represented we chose a
basis and than we can compute the trace, the determinant and the characteristic
polynomial. For the firs case, let us choose the standard R2 basis, we have

g(1, 0) = (5, 1),

g(0, 1) = (−10,−2).
(7.1)

Therefore we have the following matrix representation

Ag(x,y) =

[
5 −10

1 −2

]
; (7.2)

the invariants are

chAg(x,y)
= Det(Ag(x,y) − λI) = (5− λ)(−2− λ) + 10 = λ2 − 3λ;

Tr(Ag(x,y)) = 3;

Det(Ag(x,y)) = −10 + 10 = 0.

(7.3)

In the second case we choose the standard basis of R3, we have

h(1, 0, 0) = (0, 1, 1),

h(0, 1, 0) = (−10,−1, 1),

h(0, 0, 1) = (0, 0, 1).

(7.4)

Therefore we have the following matrix representation

Ah(x,y,z) =

0 −10 0

1 −1 0

1 1 1

 (7.5)

andnthe invariants are

chAh(x,y,z)
= Det(Ah(x,y,z) − λI) = (1− λ)[(−λ)(−1− λ) + 10] = −λ3 − 9λ+ 10;

Tr(Ah(x,y,z)) = 0;

Det(Ah(x,y,z)) = 10;

I2 =
1

2
[(Tr(Ah(x,y,z)))

2 − Tr(A2
h(x,y,z))] = 9.

(7.6)

7.2 Invariant subspaces
Determine the invariant subspaces of the following matrix

• h(z1, z2) = (z1 + z2, z1 − z2) : C2 → C2
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We can think C2 as R4; therefore we can write

h(x1, y1, x2, y2) = (x1 + x2, y1 + y2, x1 − x2, y1 − y2) : R4 → R4; (7.7)

choosing the standard basis of R4 we have

h(1, 0, 0, 0) = (1, 0, 1, 0),

h(0, 1, 0, 0) = (0, 1, 0, 1),

h(0, 0, 1, 0) = (1, 0,−1, 0),

h(0, 0, 0, 1) = (0, 1, 0,−1),

(7.8)

therefore the representing matrix is

Ah(x1,y1,x2,y2) =


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 . (7.9)

For the invariant subspaces, note that every vector of the form (x1, 0, x2, 0) is mapped
into (x1 + x2, 0, x1 − x2, 0) and every vector of the form (0, y1, 0, y2) is mapped into
(0, y1 + y2, 0, y1 − y2). The first is the R2 subspace of C2 while the second is iR2 (with
abuse of language) subspace of C2

7.3 Nullity + Rank
Given the following linear application say if they are injective, surjective or bijective

• h(x, y, z) = (2x, x− 2y, 2y − z) : R3 → R3

• g(x, y, z) = (2x+ z, x− 2y) : R3 → R2

If we have a liner map f from V to W (both on the fild K), it is injective if
dimK(Ker(f)) = 0 and it is surjective if dimK(Image(f)) = dimK(W ); morover the
following is a fundamental result

dimK(Image(f)) + dimK(Ker(f)) = n = Rank(A) +Null(A) (7.10)

where A is the representing matrix of f and n = dimK(V ). If the linear map is both
injective and surjective than it is bijective. We have the following implications:

• if dimK(W ) = dimK(V ) than f is injective if and only if it is surjective (this is
obvious: if the image of the application has the same dimension of the starting
and arriving vector spaces, the kernel must be trivial);

• if dimK(V ) > dimK(W ) than f is not injective (this is obvious again: if the
dimension of the starting vector space is grater than the one of the arriving
vector space, some subspace of the starting vector space must be contained in
the kernel of the application);
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• if dimK(W ) > dimK(V ) than f is not surjective.

In the first case we have dimK(W ) = dimK(V ) = 3 so we only need to show that f

is surjective. Let us construct the representing matrix choosing the standard basis of
R3:

h(1, 0, 0) = (2, 1, 0), h(0, 1, 0) = (0,−2, 2), h(0, 0, 1) = (0, 0,−1), (7.11)

therefore the representing matrix is

Ah(x,y,z) =

2 0 0

1 −2 0

0 2 −1

 . (7.12)

Its determinant is not vanishing and therefore its rank is maximal: the application is
bijective. In the second application we have dimK(V ) > dimK(W ) and so it is not
injective but is can be surjective: let us see. The representing matrix, choosing the
standard basis of R3 is

Ag(x,y,z) =

[
2 0 1

1 −2 0

]
; (7.13)

the two rows are independent and so the rank is Rank = 2 = dimK(W ): the function
is surjective.

7.4 Euclidean spaces
Given the following spaces endowed by the prescribed scalar product say if they are
Euclidean spaces and orthonormalize the reported vectors if the space is Euclidean.

• the space of matrix Mat(C, 2) with the scalar product (X, Y ) = Tr(X†Y ),

A =

[
i 2

i −2

]
and B =

[
0 2i

1 −1

]
;

• the space of matrix Mat(R, 2) with the scalar product (X, Y ) = Tr(XY 2XT ),

A =

[
1 2

1 −2

]
and B =

[
0 2

1 −1

]
;

• the space of polynomial of degree 2 in [0, 1] with the scalar product (p(z), q(z) =∫ 1

0
p(z)q(z)dz; p(z) = 1 + 3iz2, q(z) = 3 + 2z − z2

• the space of polynomial of degree 2 in [0, 1] with the scalar product (p(z), q(z)) =∑2
n=0 p̄nqn with pn the coefficients of the n degree monomial of p(z) and similar

for qn, p(z) = 1 + 3iz2, q(z) = 3 + 2z − z2

The first thing to do is to show that they are scalar products, namely that for every
x, y ∈ V we have
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1. (x, y) = (y, x);

2. (x, λy) = λ(x, y) for λ ∈ C;

3. (x, y + z) = (x, y) + (x, z);

4. (x, x) ≥ 0 and (x, x) = 0 iff x = 0.

The first one is a true scalar product due to the properties of the trace indeed:

1. Tr(X†Y ) = Tr(Y †X);

2. Tr(X†λY ) = λTr(X†Y );

3. Tr(X†(Y + Z)) = Tr(X†Y +X†Z) = Tr(X†Y ) + Tr(X†Z);

4. Tr(X†X) =
∑n

i,j=1 x̄ijxij ≥ 0;

so Mat(C, 2) with Tr(X†Y ) as a product is an euclidean space. The second one
is not a scalar product since it does not respect, for example, point 2; indeed
(X,λY ) = λ2(X, Y ). Therefore Mat(R, 2) with Tr(XY 2X†) is not an euclidean
space. The third case is a scalar product indeed

1.
∫ 1

0
q(z)p(z)dz =

∫ 1

0
p(z)q(z)dz;

2.
∫ 1

0
p(z)λq(z)dz = λ

∫ 1

0
p(z)q(z)dz;

3.
∫ 1

0
p(z)(q(z) + l(z))dz =

∫ 1

0
p(z)q(z)dz +

∫ 1

0
p(z)l(z)dz;

4.
∫ 1

0
p(z)p(z)dz ≥ 0

the last case is identical. The space of polynomial with these two product is, in both
cases, an euclidean space.
Now we have to orthonomalize the reported vectors; this is done using Gram-Schmidt
procedure

e(1) =
x(1)

||x(1)||
, e(j) =

x(j) −
∑j−1

k=1(e
(k), x(j))e(k)

||x(j) −
∑j−1

k=1(e
(k), x(j))e(k)||

2 ≤ j ≤ n. (7.14)

In the fist case we have, since ||A|| =
√

Tr(A†A),

A†A =

[
−i −i

2 −2

] [
i 2

i −2

]
=

[
1 + 1 −2i+ 2i

2i− 2i 4 + 4

]
⇒ ||A|| =

√
10; (7.15)

therefore
e(1) =

A√
10

(7.16)
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while

e(2) =
B − Tr

(
A†
√
10
B
)
B

||B − Tr
(

A†√
10
B
)
B||

(7.17)

where

Tr

(
A†
√
10

B

)
B =

1√
10

Tr

([
−i −i

2 −2

] [
0 2i

1 −1

])
B =

1√
10

Tr

([
−i 2 + i

−2 4i+ 2

])
B

=
2 + 3i√

10
B

(7.18)
and

B − 2 + 3i√
10

B =

[
0 2i

1 −1

]
− 2 + 3i√

10

[
0 2i

1 −1

]
=

[
0 2i

1 −1

]
=

=
1√
10

[
0 6 + i(2

√
10− 4)√

10− 2− 3i 2−
√
10 + 3i

]
;

(7.19)

therefore

||B − 2 + 3i√
10

B|| =

=
1√
10

√
Tr

([
0

√
10− 2 + 3i

6− i(2
√
10− 4) 2−

√
10 + 3i

] [
0 6 + i(2

√
10− 4)√

10− 2− 3i 2−
√
10 + 3i

])
=

=

√
−24

√
10 + 138

10
.

(7.20)
In the end

e(1) =
1√
10

[
i 2

i −2

]
, e(2) =

1√
10√

−24
√
10+138
10

[
0 6 + i(2

√
10− 4)√

10− 2− 3i 2−
√
10 + 3i

]
(7.21)

In the third case we have

||p(z)|| =

√∫ 1

0

(1− 3iz2)(1 + 3iz2)dz =

√∫ 1

0

(1 + 9z4)dz =

√(
z +

9

5
z5
)∣∣∣∣1

0

=

√
14

5
,

(7.22)
so

e(1) =
p(z)√

14
5

(7.23)

The second basis vector is

e(2) =

q(z)−
∫ 1

0

(
p(z)√

14
5

q(z)dz

)
q(z)

||q(z)−
∫ 1

0

(
p(z)√

14
5

q(z)dz

)
q(z)||

(7.24)
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where∫ 1

0

(
p(z)√

14
5

q(z)

)
q(z) =

√
5

14
q(z)

∫ 1

0

(1−3iz2)(3+2z−z2)dz =

√
5

14

(
11

3
− 39

10
i

)
q(z)

(7.25)
and

q(z)−
√

5

14

(
11

3
− 39

10
i

)
q(z) =

= 3

(
1−

√
5

14

(
11

3
− 39

10
i

))
+ 2

(
1−

√
5

14

(
11

3
− 39

10
i

))
z −

(
1−

√
5

14

(
11

3
− 39

10
i

))
z2;

(7.26)
therefore

||q(z)−
√

5

14

(
11

3
− 39

10
i

)
q(z)|| = ... (7.27)

In the end we have

e(1) =

√
5

14
+ 3

√
5

14
iz2,

e(2) =

3

(
1−

√
5
14

(
11
3
− 39

10
i

))
+ 2

(
1−

√
5
14

(
11
3
− 39

10
i

))
z −

(
1−

√
5
14

(
11
3
− 39

10
i

))
z2

...
.

(7.28)
The last case is simpler:

||p(z)|| =
√
1 + 9 =

√
10 (7.29)

so
e(1) =

p(z)√
10

; (7.30)

The second basis vector is

e(2) =
q(z)− q(z)√

10

∑2
n=0 p(z)q(z)

||q(z)− q(z)√
10

∑2
n=0 p(z)q(z)||

(7.31)

where

q(z)− q(z)√
10

2∑
n=0

p(z)q(z) = 3

(
1− 3 + 3i√

10

)
+2

(
1− 3 + 3i√

10

)
z−
(
1− 3 + 3i√

10

)
z2 (7.32)

and

||q(z)− q(z)√
10

2∑
n=0

p(z)q(z)|| = 126− 27
√
10

5
+
56− 12

√
10

5
+
14− 3

√
10

5
=

196− 42
√
10

5
;

(7.33)
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in the end

e(1) =
1√
10

[
1 + 3iz2

]
,

e(2) =
5

196− 42
√
10

[
3

(
1− 3 + 3i√

10

)
+ 2

(
1− 3 + 3i√

10

)
z −

(
1− 3 + 3i√

10

)
z2
]
.

(7.34)

8 Eigenvalue problems and matrix functions

8.1 Classification of matrices
Classify the following matrices:

1.


√
3
2

0 1
2

0 −i 0

−1
2

0
√
3
2

;

2.

 0 1 + i 1 + i

1− i 0 1 + i

1− i 1− i 0

;

3.

 0 0 1

0 0 1

−1 −1 0

;

4.

 0 1 −1

1 0 1

−1 1 0

.

The first matrix satisfies the relation
√
3
2

0 1
2

0 −i 0

−1
2

0
√
3
2


T 

√
3
2

0 1
2

0 −i 0

−1
2

0
√
3
2

 =

1 0 0

0 1 0

0 0 1

 ; (8.1)

therefore it is unitary. The second one is hermitian since 0 1 + i 1 + i

1− i 0 1 + i

1− i 1− i 0

†

=

 0 1 + i 1 + i

1− i 0 1 + i

1− i 1− i 0

 . (8.2)

The third matrix is antisymmetric while the last one is symmetric.
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8.2 Matrices determination
Determine the matrix under the following conditions:

• the generic 3× 3 antisymmetric matrix A satisfying the conditions A2 = I and
Tr(A2) = 0;

• the complex matrices B with eigenvectors v⃗1 = (1, i, 0), v⃗2 = (0, 0, 1), v⃗3 =

(i, 1, 0) such that det(B) = 1, T r(B) = 0, Av⃗2 = v⃗2, Im(λ1) > Im(λ2);

• determine the matrix C such that C ∈ SO(2) and C ∈ SU(2);

• determine the 2 × 2 matrix D such that which leaves unchanged the matrix

J =

[
0 1

−1 0

]
.

For the first case, the generic 3× 3 antisymmetric matrix is given by

A =

 0 a b

−a 0 c

−b −c 0

 , (8.3)

its square is

A2 =

−a2 − b2 −bc ac

−bc −a2 − c2 −ab

ac −ab −b2 − c2

 =

1 0 0

0 1 0

0 0 1

 , (8.4)

so

−bc = 0, ac = 0, −ab = 0, −a2 − b2 = 1, −a2 − c2 = 1, −b2 − c2 = 1; (8.5)

and
Tr(A2) = −2a2 − 2b2 − 2c2 = 0. (8.6)

This set of equations has no solutions. For the second case we know the matrix is
diagonalizable, therefore the condition can be rewritten as

λ2 = 1, λ1λ2λ3 = 1, λ1 + λ2 + λ3 = 0. (8.7)

The system has solutions(
−1− i

√
3

2
, 1,

−1 + i
√
3

2

)
,

(
−1 + i

√
3

2
, 1,

−1− i
√
3

2

)
(8.8)

but the requirement Im(λ1) > Im(λ3) fix the solution(
−1 + i

√
3

2
, 1,

−1− i
√
3

2

)
, (8.9)
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which is the diagonal form of the matrix B. To obtain the general form in the
canonical base of R3, we need to change basis; using the orthonormalized eigenvectors
we build up the base change matrix

BCM =

1 0 i

i 0 1

0 1 0

 (8.10)

whose inverse is

(BCM)−1 =

 1
2

− i
2
0

0 0 1

− i
2

1
2

0

 ; (8.11)

using

B = (BCM)Bdiag(BCM)−1 =

 −1
2

√
3
2

0

−
√
3
2

−1
2
0

0 0 1

 (8.12)

The third case is simply: we know that

SO(2) := {M ∈ GL(2,R)|det(M) = 1,MTM = I},
SU(2) := {M ∈ GL(2,C)|det(M) = 1,M †M = I}

(8.13)

Therefore we need to compute the general matrix in SO(2); this is the matrix

C =

[
a b

c d

]
(8.14)

need to satisfy the conditions

a2 + b2 = 1, ac = −bd, c2 + d2 = 1, ad− bc = 1 (8.15)

whose solution is

a = ±d, b = ±
√
1− a2, d = ±

√
1− d2. (8.16)

In the last case we need to require[
a c

b d

] [
0 1

−1 0

] [
a b

c d

]
=

[
0 1

−1 0

]
, (8.17)

therefore we have
−bc+ ad = 1, bc− ad = −1 (8.18)

so
−bc+ ad = 1. (8.19)
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8.3 Matrix functions
Given the following matrices compute the corresponding function:

• for a generic 3 × 3 matrix A with the following spectral decomposition A =∑3
k=1 λ

kP (k) with λk = eiπk compute A3;

• given P =

1
2
0 1

2

0 1 0
1
2
0 1

2

 compute the function P n ∀n ∈ N;

• given the odd function f(x) such that f(−1∓
√
3) = 2, compute the eigenvalues

of f(A) with A = (I +
∑

i σi), where σi are the Pauli matrices;

• given the matrix A = f(aI + bn⃗ · σ⃗), where a, b are real positive parameters and
n⃗ = 1√

2
(1, 0, 1). Determine its general form in the Pauli basis and specialize for

a = 0, b = 1 and f(λi) = 1 where λi are the eigenvalues of aI + bn⃗ · σ⃗.

In the first case we have

A3 =

( 3∑
k=1

λkP (k)

)
=

3∑
k,j,i=1

λkP (k)λjP (j)λiP (i) =
3∑

k,j,i=1

λkδkjλ
jδjiλ

iP (i) =

=
3∑

i=1

(λi)3P (i) = −P (1) + P (2) − P (3)

(8.20)

where we used the idempodence property of the projectors. For the second case we
note that

P 2 = P, (8.21)

therefore

P n =

{
P if n = 2k;

P if n = 2k + 1;
(8.22)

where k ∈ N. In the third case we use Cayley-Hamilton theorem: essentially every
matrix is a root of its characteristic polynomial. Therefore for a matrix n× n, we
can always reduce its power grater than n− 1 to a sum of the first n− 1 powers; so
every matrix function can be rewritten as

f(A) =
n−1∑
m=0

fmA
m, (8.23)

and the coefficients can be find requiring that on the diagonal form of the matrix we
have

f(λj) =
n−1∑
m=0

fmλ
m
j (8.24)
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where λj are the eigenvalues. In our case we have

A =

[
2 1− i

1 + i 0

]
, (8.25)

whose eigenvalues are λ− = 1−
√
3 and λ+ = 1 +

√
3. Now

f(A) = f0I + f1A (8.26)

and

f(1−
√
3) = −2 = f0I + f1(1−

√
3), f(1 +

√
3) = −2 = f0I + f1(1 +

√
3) (8.27)

whose solution is f0 = −2 and f1 = 0. Therefore

f(A) = −2I. (8.28)

Therefore the only eigenvalue is −2. In the last case we have

aI +
b√
2
(σ1 + σ3) =

[
a+ b√

2
b√
2

b√
2

a− b√
2

]
(8.29)

whose eigenvalues are λ− = a− b and λ+ = a+ b; now

A = f(aI +
b√
2
(σ1 + σ3)) = f0I + f1

[
aI +

b√
2
(σ1 + σ3)

]
, (8.30)

and
f− := f(λ−) = f0 + f1(a− b), f+ := f(λ+) = f0 + f1(a+ b) (8.31)

whose solution (for a ̸= 0, b ̸= 0)is

f0 =
a(f− − f+) + b(f− + f+)

2b
, f1 =

f+ − f−
2b

. (8.32)

In the end

A = (f0+af1)I+f1bn⃗·σ⃗ =

[
a(f− − f+) + b(f− + f+) + af+ − af−

2b

]
I+
[
f+ − f−

2

]
n⃗·σ⃗;

(8.33)
for a = 0, b = 1, f− = f+ = 1 we get

A = I. (8.34)
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8.4 Matrix ODEs
Solve the following matrix first order ODEs:

1. dx
dt

= 3x− 4y, dy
dt

= 4x− 7y, x(0) = y(0) = 1;

2. dy
dt

= 3dy
dt

+ 1
t
dy
dt

− ty, y(0) = 1. Find the solution up to third order in t.

The general solution of a matrix ODE of the form

dx(t)

dt
= A[x(t)− b] (8.35)

is
x(t) = b+ eAt[x(0)− b]. (8.36)

In the first case

A =

[
3 −4

4 −7

]
, b =

[
0

0

]
. (8.37)

So we need to compute the exponential of a matrix; the eigenvalues of A,

λ1 = −5, λ2 = 1. (8.38)

At this point we can compute the diagonal exponentiated matrix and return to the
non-diagonal using the base changing matrix; however, using Caley-Hamilton theorem
is easier:

e−5t = f0 − 5tf1, et = f0 + tf1; (8.39)

the solution is
f0 =

e−5t

6
+

5et

6
, f1 =

et

6t
− e−5t

6t
(8.40)

Now, the solution of the second case is

x(t) =
1

6

((
e−5t + 5et

)[
1 0

0 1

]
+

(
et − e−5t

t

)[
3 −4

4 −7

]
t

)[
1

1

]
, (8.41)

so

x(t) = exp

([
3 −4

4 −7

]
t

)[
1

1

]
=

[
4et/3− e−5t/3 2e−5t/3− 2et/3

2et/3− 2e−5t/3 4e−5t/3− et/3

] [
1

1

]
=

=

[
e−5t/3 + 2et/3

et/3 + 2e−5t/3

]
.

(8.42)

In the second case we need to reduce to a system, let us write dy
dt

= tx than:

dy2

dt2
= t

dx

dt
+ x; (8.43)
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so
t
dx

dt
+ x = 3tx+ x− ty ⇒ dx

dt
= 3x− y,

dy

dt
= tx. (8.44)

In matrix form [
dx
dt
dy
dt

]
=

[
3 −1

t 0

] [
x

y

]
, (8.45)

with initial condition x(0) = 1. Note that∫ t

0

A(s)ds =

∫ t

0

[
3 −1

s 0

]
ds =

[
3t −t
t2

2
0

]
(8.46)

does not commute with A. The solution is given by the T product

x(t) = T

[
exp

(∫ t

0

A(s)ds

)][
1

1

]
. (8.47)

Expanding up to second order we get

x(t) =

[
I +

∫ t

0

A(s)ds+

∫ t

0

ds

∫ s

0

A(s)A(q)dq + ...

] [
1

1

]
(8.48)

where ∫ t

0

A(s)ds =

∫ t

0

[
3 −1

s 0

]
ds =

[
3t −t
t2

2
0

]
,

∫ t

0

ds

∫ s

0

A(s)A(q)dq =

∫ t

0

ds

∫ s

0

[
−q + 9 −3

3s −s

]
dq =

∫ t

0

ds

[
− s2

2
+ 9s −3s

3s2 −s2

]
=

=

[
− t3

6
+ 9

2
t2 −3

2
t2

t3 − t3

3

]
(8.49)

so the solution, up to third order in t is,

x(t) =

([
−t3+27t2+18t+6

6
−3t2−2t

2
2t3+t2

2
−t3+3

3

]
+ ...

)[
1

1

]
=

[
−t3+18t2+12t+6

6
4t3+3t2+6

6

]
+ ... (8.50)

9 Abstract linear spaces

9.1 Lebesgue spaces
Determine for which q the following functions belongs to Lq(Rn,Ln):

• u(x) = (1 + |x|)−
n
p ;

• u(x) = χB1(0)|x|
−n

p
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To belongs to Lq(Rn,Ln) with q ∈ [1,+∞] we need that∫
|f(x)|qdnx < +∞ for q ∈ [1,+∞) (9.1)

and
sup{C | |f(x)| < C, q.o.} < +∞ for q = +∞[1,+∞). (9.2)

For the first case we have∫
Rn

∣∣∣∣ 1

1 + |x|
n
p

∣∣∣∣qdnx =

∫
Rn

1

(1 + |x|
n
p )q

dnx = Ω

∫ +∞

0

1

(1 + ρ
n
p )q

ρn−1dρ (9.3)

this function explodes at infinity, where the function behaves as

u(x) =
1

ρ
qn
p

, (9.4)

so we need to impose that at infinity the integrals behave better that a logarithm,
namely

n− 1− nq

p
< −1 ⇒ p < q. (9.5)

For the second case we have∫
Rn

∣∣∣∣ 1

|x|
n
p

∣∣∣∣qdnx = Ω

∫ 1

0

1

(ρ
n
p )q

ρn−1dρ; (9.6)

in this case we have problems at zero, so again function need to behaves better than
logarithm at zero, so

n− 1− nq

p
> −1 ⇒ p > q. (9.7)

10 Eigenvalue problems in infinite dimensional spaces

10.1 Resolvent operator for finite-dimensional matrices
Using the resolvent operator find:

• A
1
2 with A =

−1 1 0

0 −1 1

0 0 4

 and using the determination with the branch cut on

the imaginary negative axis

Recall that the resolvant operator is defined as

R(z;T ) = (zI − T )−1 (10.1)

where T is an operator; the set of complex numbers z such that the operator is
invertible is the complementary set of the spectrum of the operator. Moreover from
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the resolvant operator we can compute, using residues, the projection operators
entering in the spectral decomposition. In general we can compute the projectors
using

Pλk
=

∏
n ̸=k(T − λnI)∏
n̸=k(λk − λn)

non degeneracy case;

Pλkj
=

∏
λkn ̸=λkj

(T − λknI)∏
λkn ̸=λkj

(λkj − λkn)
degeneracy case.

(10.2)

The resolvant operator for the matrix A is given by (using the definition)

R(A; z) =

1 + z −1 0

0 1 + z −1

0 0 −4− z

−1

=


1

z+1
1

(z+1)2
1

(z+1)2(z−4)

0 1
z+1

1
(z+1)(z+4)

0 0 1
z−4

 . (10.3)

The eigenvalues of A are λ11 = λ12 = −1 and λ3 = 4. The projection operators
associated to λ1 and λ3 are computed calculating the residues of the function in the
entrees of the resolvent operator for z = λ1 and z = λ2, we get

Pλ11
=

1 0 − 1
25

0 1 −1
5

0 0 0

 , Pλ3 =

0 0 1
25

0 0 1
5

0 0 1

 . (10.4)

To find the other projector operator associated to the degenerate eigenvalues −1

(namely λ12) we use the fact that

Pλ11
+ Pλ12

+ Pλ3 = I ⇒ Pλ12
=

0 1 −1
5

0 0 0

0 0 0

 . (10.5)

Using the spectral decomposition we know that

f(A) = f(λ11)Pλ11
+ f ′(λ12)Pλ12

+ f(λ3)Pλ3 (10.6)

so using that for our determination (−1)
1
2 = −i we get

A
1
2 = −iPλ11

+
i

2
Pλ12

+ 2Pλ3 =

−i i
2

i
25

− i
10

+ 2
25

0 i i
5
+ 2

5

0 0 2

 . (10.7)

10.2 Spectrum of an operator
Given the following operators find

• the punctual spectrum and the eigenfunctions of T = −i d
dx

+ ex with D(T ) :=

{f ∈ L2[0, 1], f ′ ∈ L2[0, 1] | f(0) = f(1)};
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• the punctual spectrum and the eigenfunctions of T = d
dx

+ 1
xln(x)

with D(T ) :=

{f ∈ L2[e, e2], f ′ ∈ L2[e, e2] | f(e) = f(e2)};

• the punctual spectrum of the Fourier transform operator on L2, F , knowing
that F2 = R where R is a reflection (involutionary) operator.

For first case we need to solve the equation(
− i

d

dx
+ ex

)
f = λf (10.8)

whose solution is given by

f(x) = ce−i
∫ x
0 (ex

′−λ)dx′
= ce−i(ex−1−λx); (10.9)

imposing the boundary condition we get f(1) = f(0)

f(1) = ce−i(e−1−λ) = f(0) = c ⇒ e−i(e−1−λ) = 1, (10.10)

so we require that
λk = e− 1 + 2kπ k ∈ Z. (10.11)

In the and
eigenvalues ⇒ λk = e− 1 + 2kπ k ∈ Z;
eigenfunctions ⇒ fk(x) = f(0)e−i(ex−1−λkx).

(10.12)

For the second case we need to solve the equation(
d

dx
+

1

xln(x)

)
f = λf (10.13)

whose solution is given by

f(x) = ce
−

∫ x
e ( 1

x′ln(x′)−λ)dx′
= ce−ln(ln(x))+λ(x−e) = c

eλ(x−e)

ln(x)
; (10.14)

imposing the boundary condition we get

f(e2) = c
eλ(e

2−e)

2
= f(e) = c ⇒ eλ(e

2−e)

2
= 1, (10.15)

so we require that

λk =
ln(2) + 2kπi

e2 − e
. (10.16)

In the and
eigenvalues ⇒ λk =

ln(2) + 2kπi

e2 − e
k ∈ Z;

eigenfunctions ⇒ fk(x) = f(0)
eλk(x−e)

ln(x)
.

(10.17)
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For the last case we only need to know that, being R an involution

R2 = I ⇒ F4 = I; (10.18)

since for Caley-Hamilton theorem a linear operator satisfy it characteristic polynomial,
this means that

λ4
k = 1 ⇒ λk = ik k = 0, 1, 2, 3. (10.19)

11 Fourier transformation and series

11.1 Fourier series
Compute the Fuorier series of the following functions and use the result to sum the
indicated series:

• f(x) = ei
x
2 , −π < x < π,

∑+∞
−∞

(−1)n

n− 1
2

;

• g(x) = x(x− 2π), 0 < x < 2π,
∑∞

1
−(1)n

n2 .

To compute the Fourier series of a generic function h(x) we need to compute

an =
2

T

∫ T
2

−T
2

h(x)cos

(
2π

T
nx

)
dx;

bn =
2

T

∫ T
2

−T
2

h(x)sin

(
2π

T
nx

)
dx;

(11.1)

and the Fourier series will be given by

h(x) =
a0
2

+
∞∑
n=1

[
an cos

(
2π

T
nx

)
+ bn sin

(
2π

T
nx

)]
; (11.2)

or equivalently

h(x) =
∞∑

n=−∞

cne
i2πnx

T , (11.3)

with

cn =
1

T

∫ T
2

−T
2

h(x)e
−i2πnx

T dx. (11.4)

Let us start with the first case; we have to compute

cn =
1

2π

∫ π

−π

ei
x
2 e−inxdx =

1

2π[ i
2
− in]

ex[
i
2
−in]

∣∣∣∣π
−π

=
1

2π[ i
2
− in]

[e
iπ
2
−inπ − e−

iπ
2
+inπ] =

=
2isin((2n− 1)π

2
)

2πi[1
2
− n]

= − (−1)n

π[1
2
− n]

;

(11.5)
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so we have

f(x) =
∞∑

n=−∞

(−1)n

π[n− 1
2
]
einx. (11.6)

We note that for x = 0 that the following relation holds (since the function in
continuous in x = 0 the series converges in that point)

1 =
∞∑

n=−∞

(−1)n

π[n− 1
2
]
⇒

∞∑
n=−∞

(−1)n

[n− 1
2
]
= π. (11.7)

In the second case we have to compute

an =
1

π

∫ π

−π

[x(x− 2π)]cos

(
nx

)
dx;

bn =
1

π

∫ π

−π

[x(x− 2π)]sin

(
nx

)
dx;

(11.8)

integrating by parts we get

a0 =
2π2

3
, an>0 = (−1)n

4

n2
, bn = (−1)n

4π

n
, (11.9)

so

g(x) =
π2

3
+

∞∑
n=1

[
(−1)n

4

n2
cos (nx) + (−1)n

4π

n
sin (nx)

]
. (11.10)

we note that in x = 0 (the series converge in that point because the function is
continuous) we have

0 =
π2

3
+

∞∑
n=1

(−1)n4

n2
⇒

∞∑
n=1

(−1)n

n2
= −π2

12
. (11.11)

11.2 Computing Fourier transformations
Compute the following Fourier transformation of the following functions:

• f(x) = e−|x|;

• ϕ(q⃗) = 1

|q⃗|2+
(

Mc
ℏ

)2 ; with q⃗ ∈ Rn (do the antitransform express it as an

integral from 0 to +∞);

• h(x⃗) = e−a|x⃗|2 with x⃗ ∈ R7.

Let us use the definition of the Fourier transform with the 1
2π

factor in its inverse.
For the first case we have

f̂(p) =

∫ +∞

−∞
e−|x|e−ipxdx =

∫ 0

−∞
exe−ipxdx+

∫ +∞

0

e−xe−ipxdx =

=
ex−ipx|0−∞

1− ip
+

e−x−ipx|∞0
−1− ip

=
1

1− ip
+

1

1 + ip
=

2

1 + p2
.

(11.12)
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For the second case we have

ϕ(r⃗) =

∫
dq⃗

(2π)n
eiq⃗·r⃗

|q⃗|2 +
(
Mc
ℏ

)2 (11.13)

we note that ∫ ∞

0

dβe−β(|q⃗|2+k2) = − 1

|q⃗|2 + k2
e−β(|q⃗|2+k2)

∣∣∣∣∞
0

=
1

|q⃗|2 + k2
,

so, fixing k = Mc
ℏ , we get

ϕ(r⃗) =
1

(2π)n

∫
dq⃗

∫ ∞

0

dβeiq⃗·r⃗−β(q2+k2) =
1

(2π)n

∫ ∞

0

dβ
n∏

i=1

∫ +∞

−∞
dqie

iqiri−β(q2i +k2);

(11.14)
using the gaussian integral∫ +∞

−∞
dqae−bq2+cq+d = a

√
π

b
e

c2

4b
+d,

where, for our case, a = 1, b = β, c = iri e d = −βk2, we get

ϕ(r⃗) =
1

(2π)n

∫ ∞

0

n∏
i=1

[√
π

β
e−

r2i
4β

−β
(

Mc
ℏ

)2]
=

π
n
2

(2π)n

∫ ∞

0

dβ
e−

r2

4β
−β
(

Mc
ℏ

)2
β

n
2

. (11.15)

In the last case we have the product of seven Fourier integrals of the one-dimensional
gaussian

h̃(p⃗) =

(∫ +∞

−∞
e−ax2

1e−ip1x1dx1

)
...

(∫ +∞

−∞
e−ax2

7e−ip7x7dx7

)
; (11.16)

now, starting from ∫ +∞

−∞
e−t2i dxi =

√
π (11.17)

using the change of variables ti =
√
axi +

pi
2
√
a

we get∫ +∞

−∞
e−ax2

i e−pixidxi =

√
π

a
e

p2i
4a . (11.18)

At this point we note that if we substitute pi → ipi, equation 11.18 is extended to
holomophic functions that, since they coincide on the real axis, must coincide in all
the complex plane. Therefore∫ +∞

−∞
e−ax2

i e−ipixidxi =

√
π

a
e−

p2i
4a ; (11.19)

in the end

h̃(p⃗) =

(
π

a

) 7
2

e−
|p⃗|2
4a (11.20)
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11.3 Fourier transformation and ODEs
Find a particular solution of following ODEs using Fourier transform:

• z̈ + γż + ω2
0z = AeiΩt;

• ẍ−m2x = J ;

• 3x′′′ + x′ + x = t

We know that the Fourier transform of ẋ(t) is −ikx̃(k) where x̃(k) is the Fourier
transform of x(t) (we adopt this convention). Therefore we have in Fourier transform
we have

(−k2 + iγk + ω2
0)z̃(k) = A

∫ +∞

−∞
eiΩte−iktdt = 2πAδ(Ω− k);

(−k2 −m2)x̃(k) = J

∫ +∞

−∞
e−iktdt = 2πJδ(−k);

(3ik3 − ik + 1)x̃(k) =

∫ +∞

−∞
te−iktdt = i2πδ′(k)

(11.21)

So the solutions in Fourier space are

z̃(k) =
2πAδ(Ω− k)

(−k2 + iγk + ω2
0)
;

x̃(k) =
2πJδ(−k)

−k2 −m2
;

x̃(k) =
i2πδ′(k)

3ik3 − ik + 1

(11.22)

while the solutions in real space are

z(t) =
1

2π

∫ +∞

−∞

2πAδ(Ω− k)

(−k2 + iγk + ω2
0)
eiktdk =

AeiΩt

−Ω2 + iγΩ + ω2
0

;

x(t) =
1

2π

∫ +∞

−∞

2πJδ(−k)

−k2 −m2
eiktdk = − J

m2
;

x(t) =
1

2π

∫ +∞

−∞

i2πδ′(k)

3ik3 − ik + 1
eiktdk = t− 1

(11.23)

12 Integral equations

12.1 ODEs and Volterra integral equations
Given the following ODEs rewrite them as integral equations:

1. y′′(x) + xy′(x) + y = 0, y(0) = 1, y′(0) = 0;
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2. y′′(x) + y = 0, y(0) = 0, y′(0) = 1;

3. y′′(x) + y = cos(x), y(0) = y′(0) = 0;

The general procedure is to put ϕ(x) = y(n) where n is the maximal order
derivative appearing in the ODE. Then we star to integrate using the fundamental
theorem of calculus and the identity∫ x

x0

dx...

∫ x

x0

dx︸ ︷︷ ︸
n−times

f(x)
1

(n− 1)!

∫ x

x0

(x− z)n−1f(z)dz (12.1)

and the boundary conditions. Using this procedure we can transform an ODE in a
Volterra integral equation of the II kind.

In all cases we put ϕ(x) = y′′(x). In the first case we have

y′(x) =

∫ x

0

ϕ(t)dt+ y′(0) =

∫ x

0

ϕ(t)dt, (12.2)

so
y(x) =

∫ x

0

dt

∫ x

0

dtϕ(t) + y(0) =

∫ x

0

(x− t)ϕ(t)dt+ 1. (12.3)

Inserting in the original ODE we get

ϕ(x) + x

∫ x

0

ϕ(t)dt+

∫ x

0

(x− t)ϕ(t)dt+ 1 = 0; (12.4)

this is a Volterra integral equation of the II kind with K(x, t) = 2x−t, λ = −1, f(x) =

−1.
In the second case we have

y′(x) =

∫ x

0

ϕ(t)dt+ y′(0) =

∫ x

0

ϕ(t)dt+ 1, (12.5)

so
y(x) =

∫ x

0

dt

∫ x

0

dtϕ(t) +

∫ x

0

dt+ y(0) =

∫ x

0

(x− t)ϕ(t)dt+ x. (12.6)

Inserting in the original ODE we get

ϕ(x) +

∫ x

0

(x− t)ϕ(t)dt+ x = 0; (12.7)

this is a Volterra integral equation of the II kind with K(x, t) = x−t, λ = −1, f(x) =

−x.
In the last case we have

y′(x) =

∫ x

0

ϕ(t)dt+ y′(0) =

∫ x

0

ϕ(t)dt, (12.8)
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so
y(x) =

∫ x

0

dt

∫ x

0

dtϕ(t) + y(0) =

∫ x

0

(x− t)ϕ(t)dt. (12.9)

Inserting in the original ODE we get

ϕ(x) +

∫ x

0

(x− t)ϕ(t)dt+ cos(x) = 0; (12.10)

this is a Volterra integral equation of the II kind with K(x, t) = −x+t, λ = 1, f(x) =

cos(x).

12.2 Volterra integral equations of II kind
Solve the following Volterra integral equations of the II kind using the iterated kernel
method:

1. ϕ(x) = 1 +
∫ x

0
ex−t+mϕ(t)dt;

2. ϕ(x) = x+
√
2
∫ x

0
ϕ(t)dt.

Given the general Volterra integral equation of the II kind

ϕ(x) = f(x) + λ

∫ x

0

K(x, t)ϕ(t)dt (12.11)

the solution can be expressed in term of the risolvent operator as

ϕ(x) = f(x) + λ

∫ x

0

R(x, t, λ)f(t)dt (12.12)

where

R(x, t, λ) =
∞∑
n=0

λnKn+1(x, t) (12.13)

where the iterated kernels are defined as

K1(x, t) = K(x, t), Kn+1(x, t) =

∫ x

t

K(x, z)Kn(z, t)dz. (12.14)

In the first case we have K1(x, t) = ex−t so the iterated kernels are

K2(x, t) =

∫ x

t

ex−zez−tdz = ex−t(x− t);

K3(x, t) =

∫ x

t

(z − t)ex−zez−tdz = ex−t

∫ x

t

(z − t)dz = ex−t

∫ x−t

0

ydy =
(x− t)2

2
ex−t;

...

Kn(x, t) =

∫ x

t

(z − t)n−2

(n− 2)!
ex−zez−tdz =

(x− t)n−1

(n− 1)!
ex−t.

(12.15)
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The risolvent operator is given by

R(x, t, λ) =
∞∑
n=0

λn(z − t)n

n!
ex−t = eλ(x−t)ex−t = e(λ+1)(x−t), (12.16)

therefore the solution is simply

ϕ(x) = 1 + λ

∫ x

0

e(λ+1)(x−t)dt = 1 + λe(λ+1)x

∫ x

0

e−(λ+1)tdt = 1− λ

λ+ 1
+

e(λ+1)x

λ+ 1
.

(12.17)
In the end

ϕ(x) = 1− em

em + 1
+

e(e
m+1)x

em + 1
. (12.18)

In the second case we have K1(x, t) = 1 so the iterated kernels are

K2(x, t) =

∫ x

t

dz = x− t;

K3(x, t) =

∫ x

t

(z − t)dz =

∫ x−t

0

ydy =
(x− t)2

2
;

...

Kn(x, t) =

∫ x

t

(z − t)n−2

(n− 2)!
dz =

(x− t)n−1

(n− 1)!
.

(12.19)

The risolvent operator is given by

R(x, t, λ) =
∞∑
n=0

λn(z − t)n

n!
= eλ(x−t), (12.20)

therefore the solution is simply

ϕ(x) = x+ λ

∫ x

0

teλ(x−t)dt = x+ λeλx
[
− x

λ
e−λx −

∫ x

0

e−λtdt

]
= 1− eλx. (12.21)

In the and
ϕ(x) = 1− e

√
2x. (12.22)

12.3 Fredholm integral equations of II kind
Solve the following Fredholm integral equations of the II kind using the Fredholm
determinats method:

1. ϕ(x)− λ
∫ 1

0
xetϕ(t)dt = e−x, (λ ̸= 1);

2. ϕ(x)− λ
∫ 1

0
(x− 2t)ϕ(t)dt = 0.
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The general Fredholm integral equation of the II kind

ϕ(x)− λ

∫ b

a

K(x, t)ϕ(t)dt = f(x) (12.23)

can be resolved using resolvent formalism

ϕ(x) = f(x) + λ

∫ b

a

R(x, t, λ)f(t)dt. (12.24)

The risolvent operator can be computed in terms of the Fredhoml determinants:

R(x, t, λ) =
FD(x, t, λ)

FD(λ)
(12.25)

where

FD(x, t, λ) = K(x, t) +
∞∑
n=1

(−1)n

n!
λnBn(x, t);

FD(λ) = 1 +
∞∑
n=1

(−1)n

n!
λnCn;

(12.26)

with

Bn(x, t) =

∫ b

a

dt1...

∫ b

a

dtn︸ ︷︷ ︸
n−times

∣∣∣∣∣
K(x, t) . . . K(x, tn)

... . . .
...

K(tn, t) . . . K(tn, tn)

 ∣∣∣∣∣, B0(x, t) = K(x, t) (12.27)

and

Cn =

∫ b

a

dt1...

∫ b

a

dtn︸ ︷︷ ︸
n−times

∣∣∣∣∣
K(t1, t) . . . K(t1, tn)

... . . .
...

K(tn, t) . . . K(tn, tn)

 ∣∣∣∣∣, C0 = 1. (12.28)

In general these determinants are difficult to compute but we have the following
reletions

Bn(x, t) = CnK(x, t)− n

∫ b

a

K(x, s)Bn−1(s, t)ds; Cn =

∫ b

a

Bn−1(s, s)ds. (12.29)

In the fir case we have K(x, t) = xet and B0(x, t) = xet. Let us compute the
Fredholm determinants using their definition. First of all we have

B1(x, t) =

∫ 1

0

∣∣∣∣∣
[
xet xet1

t1e
t t1e

t1

] ∣∣∣∣∣dt1 = 0, Bn(x, t) = 0 ∀n; (12.30)
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and

C1 =

∫ 1

0

t1e
t1dt1 =

∫ 1

0

∂

∂α
eαt1dt1

∣∣∣∣
α=1

=
∂

∂α

∫ 1

0

eαt1dt1

∣∣∣∣
α=1

=
∂

∂α

[
1

α

(
eα − 1

)]∣∣∣∣
α=1

=

=

(
− 1

α2

[
eα − 1

]
+

1

α
eα
)∣∣∣∣

α=1

= 1;

C2 =

∫ 1

0

∫ 1

0

∣∣∣∣∣
[
t1e

t1 t1e
t2

t1e
t2 t2e

t2

] ∣∣∣∣∣dt1dt2 = 0, Cn = 0∀n;

(12.31)
therefore

FD(x, t, λ) = K(x, t) = xet, FD(λ) = 1− λ. (12.32)

The risolvent operator is therefore given by

R(x, t, λ) =
xet

1− λ
, (12.33)

and the solution of the integral equation is given by

ϕ(x) = e−x + λ

∫ 1

0

xet

1− λ
e−tdt = e−x + x

λ

1− λ
. (12.34)

In the second case we use the recursive formula to compute the Fredholm deter-
minant. We have C0 = 1, B0(x, t) = x− 2t so

C1 =

∫ 1

0

−sds = −1

2
, B1(x, t) = −1

2
(x−2t)−

∫ 1

0

(x−2s)(s−2t)ds = −x−t+2xt+
2

3
,

(12.35)
then

C2 =

∫ 1

0

(−2s+2s2+
2

3
)ds =

1

3
, B2(x, t) =

1

3
(x−2t)−2

∫ 1

0

(x−2s)(−s−t−2st+
2

3
)ds = 0,

(12.36)
then

Cn = Bn(x, t) = 0∀n > 2. (12.37)

The risolven opertor is

R(x, t, λ) =
x− 2t+ (x+ t− 2xt− 2

3
)λ

1 + λ
2
+ λ2

6

(12.38)

and the solution of the integral equation is

ϕ(x) = λ

∫ 1

0

x− 2t+ (x+ t− 2xt− 2
3
)λ

1 + λ
2
+ λ2

6

dt =
λ

1 + λ
2
+ λ2

6

[
x−1+λ

(
x+

1

2
−x− 2

3

)]
.

(12.39)
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13 Green function and Sturm-Liuville operators

13.1 Find Green functions
Given the following Cauchy problems find the Green function of the operator:

1. y′′′′(x) = 0, y(0) = y′(0) = 0, y(1) = y′(1) = 0;

2. y′′(x) + k2y(x) = 0, y(0) = y(1) = 0;

The Green function of a boundary-value problem for a differential operator

D[y] = p0(x)y
(n) + p1(x)y

(n−1) + ...+ pn(x)y = 0 (13.1)

is defined as the function G(x, t) defined for a < t < b where x ∈ [a, b] and given by
the following equation

D[G(x, t)] = δ(x− t). (13.2)

It has to satisfy that it is continuous up to order (n− 2)th derivative inclusive (for
an n-order differential operator) while the (n− 1)th derivative has a jump for x = t

equal to 1
p0(t)

. Moreover it has to satisfy the boundary conditions. This means that
in general the construction of the Green function is a replica of the tool used to
construct weak solution of ODEs. However, for the specific class of Sturm-Liuville
operators, namely

(p(x)y′(x))′ + q(x)y(x) = 0, y(a) = A, y(b) = B, (13.3)

we have a nice formula

G(x, t) =
1

p(t)W (t)
[y1(x)y2(t)Θ(t− x) + y2(x)y1(t)Θ(x− t)] (13.4)

where y1(x) and y2(x) are two linear independent solutions such that

y1(a) = A, y1(b) ̸= B, y2(a) ̸= A, y2(b) = B (13.5)

and W(x) is the Wronskian determinant.
Let us start from the first equation. This is linear and has as set of independent

solutions y1(x) = 1, y2(x) = x, y3(x) = x2, y4(x) = x3; therefore the general solution
is

y(x) = A+Bx+ Cx2 +Dx3. (13.6)

Imposing the boundary condition we get the relations

A = 0, B = 0, A+B + C +D = 0, B + 2C + 3D = 0 (13.7)

whose solution is A = B = C = D = 0. The problem admits only the trivial
solution and so the Green function is unique (this is a theorem: if a boundary-value
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differential problem admits only the trivial solution, the Green function of the operator
is unique).Let us write the Green function as (x ∈ [0, 1])

G(x−t) = A1+B1x+C1x
2+D1x

3Θ(t−x)+A2+B2x+C2x
2+D2x

3Θ(x−t), (13.8)

Imposing the continuity up to the third derivative excluded together with the jump
on the third derivative at x = t, we get

A2 − A1 + (B2 −B1)t+ (C2 − C1)t
2 + (D2 −D1)t

3+ = 0;

B2 −B1 + 2(C2 − C1)t+ 3(D2 −D1)t
2 = 0;

2(C2 − C1) + 6(D2 −D1)t = 0;

6(D2 −D1) = 1;

(13.9)

using, a t this point, that the Green function has to satisfy the boundary condi-
tion,namely

A1 = 0, B1 = 0, A2 +B2 + C2 +D2 = 0, B2 + 2C2 + 3D2 = 0, (13.10)

we can solve to find

A1 = 0, B1 = 0, C1 =
t

2
− t2 +

t3

2
, D1 = −1

6
+

t2

2
− t3

6
;

A2 = −t3

6
, B2 =

t2

2
, C2 = −t2 +

t3

3
, D2 =

t2

2
− t3

3
.

(13.11)

Plugging back we find the Green function.
Second case is simpler since this is a Sturm-Liuville operator. We may note that

y1(x) = sin(kx) satisfy y1(0) = 0 while y2(x) = sin((k − 1)x) satisfy y2(1) = 0 and
they are linearly independent. The wroskian determinant is given by W (x) = ksin(k)

so
G(x, t) =

1

ksin(k)
[sin((k − 1)t)sin(kx)Θ(t− x) + (t ↔ s)]. (13.12)

13.2 Solution of ODEs with Green function
Find the solution of the following ODEs using the Green function:

1. y′′(x)− y(x) = x, y(0) = y(1) = 0;

2. y′′(x) + y(x) = x, y(0) = y
(
π
2

)
= 0;

3. y′′(x) + λy(x) = x, y(0) = y
(
π
2

)
= 0.

There is a theorem according to which if the boundary-vale problem D[y] = 0

with a set of boundary condition B has Green function G(x, t) the solution of the
boundary-value problem D[y] = f(x) with the same boundary conditions is given by

y(x) =

∫ b

a

G(x, t)f(t)dt (13.13)
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with x ∈ [a, b]. More generally if the boundary-value problem D[y] = 0 with a set of
boundary condition B has Green function G(x, t) the solution of the boundary-value
problem D[y] = λy(x) + f(x) with the same boundary conditions is given by the
following Fredholm integral equation

y(x) = λ

∫ b

a

G(x, t)y(t)dt+

∫ b

a

G(x, t)f(t)dt (13.14)

with x ∈ [a, b].
Let us start from the first case. This is a Sturm-Liuville operator, let us find the

Green function for the homogeneous problem. Solutions are y1(x) = sinh(x), which
satisfy y1(0) = 0, and y2(x) = sinh(x− 1) which satisfy y2(1) = 0. The wronskian
determinant is

W (x) =

∣∣∣∣ [sinh(x) sinh(x− 1)

cosh(x) cosh(x− 1)

] ∣∣∣∣ = sinh(x)cosh(x−1)−cosh(x)sinh(x−1) = sinh(1)

(13.15)
where we used the sum and difference formulas for hyperbolic functions. The Green
function is

G(x, t) =
1

sinh(1)
[sinh(x)sinh(t− 1)Θ(t− x) + (x ↔ t)]. (13.16)

The solution of the original boundary-value problem is given by

y(x) =
1

sinh(1)

∫ 1

0

[sinh(x)sinh(t− 1)Θ(t− x) + (x ↔ t)]tdt =

=
sinh(x− 1)

sinh(1)

∫ x

0

tsinh(t)dt+
sinh(x)

sinh(1)

∫ 1

x

tsinh(t− 1)dt,

(13.17)

since∫ x

0

tsinh(t)dt = xcosh(x)−sinh(x),

∫ 1

x

tsinh(t−1)dt = 1−xcosh(x)+sinh(x−1),

(13.18)
we get

y(x) =
sinh(x− 1)[xcosh(x)− sinh(x)] + sinh(x)[1− xcosh(x− 1) + sinh(x− 1)]

sinh(1)
=

=
sinh(x)

sinh(1)
− x.

(13.19)
In the second we have again a Sturm-Liuville operator; y1(x) = sin(x), such that

y1(0) = 0, and y2(x) = cos(x) such that y2
(
π
2

)
= 0. The wronskian determinant is

W (x) =

∣∣∣∣ [sin(x) cos(x)

cos(x) −sin(x)

] ∣∣∣∣ = −sin2(x)− cos2(x) = −1 (13.20)
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and the Green function is given by

G(x, t) = −sin(x)cos(t)Θ(t− x)− (x ↔ t). (13.21)

The solution of the original boundary-value problem is given by

y(x) = −
∫ π

2

0

[sin(x)cos(t)Θ(t− x) + (x ↔ t)]tdt =

= −cos(x)

∫ x

0

tsin(t)dt− sin(x)

∫ π
2

x

tcos(t)dt =

= −cos(x)[sin(x)− xcos(x)]− sin(x)[cos(x) + xsin(x)] =

= x[cos2(x)− sin2(x)]− 2cos(x)sin(x).

(13.22)

The last case is more complicated. First of all let us determine the Green function
for the homogeneous problem with λ = 0. This is a Sturm-Liuville operator and the
two linearly independent solutions are y1(x) = x, so y1(0) = 0, and y2(x) = x− π

2
, so

y2
(
π
2

)
= 0. The wronskian determinant is easly computed to be W (x) = π

2
; therefore

the Green function is given by

G(x, t) =
2

π

[
x

(
t− π

2

)
Θ(t− x) + (x ↔ t)

]
. (13.23)

The solution can be expressed as integral equation

y(x) = −λ

∫ π
2

0

2

π

[
x

(
t− π

2

)
Θ(t− x) + (x ↔ t)

]
y(t)dt+

+

∫ π
2

0

2

π

[
x

(
t− π

2

)
Θ(t− x) + (x ↔ t)

]
tdt =

= −λ

∫ π
2

0

2

π

[
x

(
t− π

2

)
Θ(t− x) + (x ↔ t)

]
y(t)dt+

x3

6
− π2x

24
;

(13.24)

we now have to solve this Fredholm integral equation. The solution is given in term
of the risolvent operator

y(x) =
x3

6
− π2x

24
− λ

∫ π
2

0

FD(x, t, λ)

FD(λ)

(
t3

6
− π2t

24

)
dt; (13.25)

14 PDEs

14.1 Wave equation
Solve the following problems for the wave equation:

1. utt − c2uxx = cos(x), u(x, 0) = sin(x), ut(x, 0) = 1 + x;

– 67 –



2. utt − uxx = 0, u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = 0, u(π, t) = 0, t ≤ 0, x ∈
[0, π].

PDEs are not trivial to solve. In the case of nonhomogeneous wave equation we
can solve a nonhomogeneous initial condition problem using d’Alambert and Duhamel
formule

u(x, t) = uA(x, t) + uD(x, t) =

=
1

2
[g(x+ ct) + g(x− ct]) +

1

2c

∫ x+ct

x−ct

h(s)ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s)dyds

(14.1)
where f(x, t) is the nonhomogeneous term while g(x) and h(x) are the initial conditions
on the function and its derivative respectively. In the case of mixed boundary/initial
condition and support in a limited region the solution can be found in term of Fourier
series where the coefficients are constrained by the boundary/initial mixed conditions.

Let us start with the first problem. The solution is easily computed using
d’Alambert and Duhamel fomrmule

uA(x, t) =
1

2
[sin(x+ ct) + sin(x− ct)] +

1

2c

∫ x+ct

x−ct

(1 + s)ds =

= sin(x)cos(ct) +
1

2c

[
s+

s2

2

]
= sin(x)cos(ct) + xt+ t;

uD(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

cos(y)dyds =

=
1

2c

∫ t

0

[sin(x− c(t− s))− sin(x+ c(t− s))]ds =
1

c2
(cos(x)− cos(x)cos(ct)).

(14.2)
Therefore the solution is

u(x, t) = sin(x)cos(ct) + xt+ x+
1

c2
(cos(x)− cos(x)cos(ct)). (14.3)

In the second case we have mixed conditions and we need to use Fourier series.
We write

u(x, t) =
a0(t)

2
+

∞∑
n=1

an(t)con(nx) + bn(t)sin(nx); (14.4)

the boundary conditions fix the coefficients

u(0, t) = 0 ⇒ a0(t)

2
+

∞∑
n=1

an(t) = 0, u(π, t) = 0 ⇒ a0(t)

2
−

∞∑
n=1

an(t) = 0 (14.5)

whose solution is an(t) = 0∀n ∈ N. So we have

u(x, t) =
∞∑
n=1

bn(t)sin(nx) (14.6)
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and plugging back into the equation we get
∞∑
n=1

b′′(t)sin(nx) +
∞∑
n=1

b(t)n2sin(nx) = 0 ⇒ b′′(t) + n2b(t) = 0; (14.7)

this is an ODE whose solution is given by

bn(t) = cnsin(nt) + dncos(nt). (14.8)

Coefficients are determined by initial conditions

u(x, 0) = 1 ⇒
∞∑
n=1

dnsin(nx) = 1, u(x, 0) = 0 ⇒
∞∑
n=1

ncnsin(nx) = 0 (14.9)

so multiplying by sin(mx) and integrating we get (using the orthogonality of the sine
functions

∫ π

0
sin(mx)sin(nx) = π

2
δmn)∫ π

0

sin(mx)dx = dm
π

2
,

∫ π

0

0dx = mcm
π

2
. (14.10)

Therefore

dm =
2

mπ
(1− con(nπ)) =

{
4

mπ
m odd

0 m even
; cm = 0; (14.11)

and we get

bn(t) =

{
4
nπ
cos(nt) m odd,

0 m even;
(14.12)

and in the end we get the solution

u(x, t) =
4

π

∞∑
n=0

cos((2n+ 1)t)sin((2n+ 1)x)

(2n+ 1)
. (14.13)

14.2 Heat equation
Solve the following problems for the heat equation:

1. ut = ∆u+ 1, u(x⃗, 0) = 1, t > 0, x⃗ ∈ R5;

2. ut = uxx, u(x, 0) = x2 − x+ 1, u(0, t) = 1, u(2, t) = 3, x ∈ [0, 2], t > 0.

To solve the heat equation we can use, for example, the method of the kernel or
the separation of variables. In the first approach we use Fourier transform to write

(̂ut)(k⃗, t) =
∂

∂t
û(k⃗, t), ∆̂u(k⃗, t) = −|⃗k|2û(k⃗, t), (14.14)

to rewrite the n-dimensional homogeneous heat equation as

∂

∂t
û(k⃗, t) = −|⃗k|2û(k⃗, t), (14.15)
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whose solution is û(k⃗, t) = Ce−|⃗k|2t. The initial condition is given by û(k⃗, 0) = f̂(k⃗)

from which we get
C = f̂(k⃗), (14.16)

therefore the solution is given by

û(k⃗, t) = f̂(k⃗)e−|⃗k|2t ⇒ u(x⃗, t) =
̂

f̂(k⃗)e−|⃗k|2t (14.17)

performing the Fourier inversion we get

u(x⃗, t) =
1

(4πt)
n
2

∫
Rn

e−
|x⃗−y⃗|2

4t f(y)dy := uK(x⃗, t). (14.18)

For a non-homogeneous heat equation with non-homogeneous term g(x⃗, t) with
non-homogeneous initial condition we have, using Duhamel principle,

u(x⃗, t) = uK(x⃗, t) + uD(x⃗, t) =

=
1

(4πt)
n
2

∫
Rn

e−
|x⃗−y⃗|2

4t f(y⃗)dny +

∫ t

0

1

(4π(t− s))
n
2

∫
Rn

e−
|x⃗−y⃗|2
4(t−s) g(y⃗, s)dnyds.

(14.19)
Another useful method to solve homogeneous heat equation is the separation of

variables. First of all we need to find a function

v(x⃗, t) = u(x⃗, t) + (ax⃗+ b) (14.20)

with a, b such that v(0, t) = 0, v(2, t) = 0. Then we perform a separation of variables
v(x⃗, t) = X(x⃗)T (t) and inserting in the original equation we end with a system of
two ODEs. Taking into account the initial condition we are able to fix the coefficients
of the expansion of the function v(x⃗, t); returning to u(x⃗, t) we get the solution.

Let us start with the first case. Using the kernel method we have (using gaussian

integral with a = e−
x21
4t , b = 1

4t
, c = 2x1, d = 0)

uK(x⃗, t) =
1

(4πt)
5
2

∫
R5

e−
|x⃗−y⃗|2

4t d5y =

=
1

(4πt)
5
2

(∫ +∞

−∞
e−

(x1−y1)
2

4t dy1

)
...

(∫ +∞

−∞
e−

(x5−y5)
2

4t dy5

)
=

=
1

(4πt)
5
2

(√
4tπe

x21(16t
2−1)

4t

)
...

(√
4tπe

x25(16t
2−1)

4t

)
=

= e
|x⃗|2(16t2−1)

4t ,

(14.21)

and

uD(x⃗, t) =

∫ t

0

1

(4π(t− s))
5
2

∫
R5

e−
|x⃗−y⃗|2
4(t−s) d5yds =

=

∫ t

0

e
|x⃗|2(16(t−s)2−1)

4(t−s) ds

(14.22)
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So the solution is given by

u(x⃗, t) = e
|x⃗|2(16t2−1)

4t +

∫ t

0

e
|x⃗|2(16(t−s)2−1)

4(t−s) ds. (14.23)

In the second case we use the separation of variable method. Let us put

v(x, t) = u(x, t) + (ax+ b) (14.24)

with a, b such that

v(0, t) = 0 ⇒ 0 = u(0, t) + b = 1 + b ⇒ b = −1;

v(2, t) = 0 ⇒ 0 = u(2, t) + 2a− 1 = 2a+ 2 ⇒ a = −1;
(14.25)

therefore
v(x, t) = u(x, t)− x− 1. (14.26)

We have reduced the problem to vt = vxx, v(x, 0) = x2−x+1−x−1 = x2−2x, v(0, t) =

0, v(2, t) = 0, x ∈ [0, 2], t > 0. We now put

v(x, t) = X(x)T (t) (14.27)

and from the boundary conditions we have

v(0, t) = X(0)T (t) = 0, v(2, t) = X(2)T (t) = 0 ⇒ X(0) = X(2) = 0. (14.28)

Interting in the equation we get

XT ′ −X ′′T = 0 ⇒ X ′′

X
=

T ′

T
(14.29)

Since X′′

X
and T ′

T
are independent functional ratios, the only possibility is that they

are equal to the same constant −λ, we get

X ′′ + λX = 0, T ′ + λT = 0. (14.30)

From the first equation we get

X(x) = acos(
√
λx) + bsin(

√
λx); (14.31)

and using the boundary condition X(0) = X(2) = 0 we get

X(0) = a = 0, (14.32)

so X(x) = bsin(
√
λx), and

X(2) = bsin(2
√
λ) = 0 ⇒ λ =

(
nπ

2

)2

. (14.33)
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Since there is an n in λ, this means that we have a set of function Xn(X) that are
avaible solutions instead of only one:

Xn(x) = bnsin

(
nπx

2

)
. (14.34)

Knowing λ we can solve the equation for T (t) (we will get a set of function labelled
by n for the same reason of before), we get

Tn(t) = cne
−(nπ

2
)2t; (14.35)

the solutions is so

v(x, t) =
∞∑
n=1

Xn(x)Tn(t) =
∞∑
n=1

bncnsin

(
nπx

2

)
e−(nπ

2
)2t =

∞∑
n=1

dnsin

(
nπx

2

)
e−(nπ

2
)2t

(14.36)
where dn = bncn. The sum is there because since each vn(x, t))Xn(x)Tn(t) is a solution,
the most general solution will be given by a combination of vn(x, t) (this is true only
because the heat equation is linear). The coefficients dn can be found using the initial
condition

v(x, 0) = x2 − 2x ⇒ x2 − 2x =
∞∑
n=1

dnsin

(
nπx

2

)
(14.37)

from which, using ortogonality of sine function, we get

dm =

∫ 2

0

(x2 − 2x)sin

(
mπx

2

)
=

{
0 m even

− 32
(nπ3)

m odd
. (14.38)

The solution is so

v(x, t) =
∞∑
n=0

− 32

((2n+ 1)π3)
sin

(
(2n+ 1)πx

2

)
e−
(

(2n+1)π
2

)2
t, (14.39)

and returning back to function u(x, t) we find the solution of the original problem

u(x, t) =
∞∑
n=0

− 32

((2n+ 1)π3)
sin

(
(2n+ 1)πx

2

)
e−
(

(2n+1)π
2

)2
t + x+ 1. (14.40)
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