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1 Complex and analytic functions

1.1 de Moivre formula and integer powers

Given the complex number z = 1 — 1/3i compute the number 2° and write the result

in cartesian coordinates.



Given the polar form of a complex number z = pe? with p its modulus and 4 its
argument,
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Re(2)
arctang(lm((z))) —7m if Re(z) <0UIm(z) <0
(1.1)

we can compute
2" = plem? (1.2)

where now the modulus is p™ while the argument is nf. Using Euler formula we can
write

2" = p"[cos(nB) + isin(nb)], (1.3)

this is the de Moivre formula. Let us use it to compute 2° with z =1 — V/3i. The

modulus is p = /1 + 3 = v/4 = 2 while its argument is Arg(z) = arctang(—‘/Tg) =—3.

Therefore the we can compute the power

20 =20 [cos( — %ﬂ) + isin( — %ﬁ)} = 64. (1.4)

1.2 Complex logarithm and exponential
Compute the natural logarithm and the exponential of the number z = —2v/3 + 2i.
The complex logarithm is given by
log(z) = log(p) + i(Arg(z) + 2km) k€ Z (1.5)

where the principal branch is —7 < Arg(z) < 7 and without the term 2ik7, while
the complex exponential is given by

7 — eRe(z)eilm(z). (16)

In our case we have Re(z) = —2v/3, Im(z) = 2 and

2 T 5
=V12+4=+14, Arg(z) = arctan (——>+7T:——+7T:—7T; 1.7
ViZ T e o( - 57 " pm=2m (L)
therefore
5 1 9 . _oV3 9
log(z) = log(v/14) + igm = 5[09(14) + igm € =e e (1.8)
All the other branches of the logarithm are given by
5 1 D .
log(z) = log(v/14) + 5T = §log(14) + igT + 2ikm, keZ. (1.9)



1.3 Complex powers and root

Compute the powers z¢, 2z and the root 4y/z, of z = 2 + 2i.

Let us compute modulus and argument of z: p = 4+ 4 = /8 and Agr(z) =
arctang(l) = 5. The power for a complex exponent is given by the polyhydrome
function

(Za)k _ elog(za) _ ealog(z) _ ealog(p)eia(Arg(z)+2k7r) with k € Z, (110)

therefore

(2°)), = eelog(\/g)eie(?r%”) — 83 [cos (e (% + 2/<:7r)> + isin (e (% + 2]4571’))1 ;

(2 = e”"g(\/g)eﬁ(%wkﬂ) = e*(%”’”) [cos(log(v/)) + isin(log(v/R))].
(1.11)
The root is also a polyhydrome function and the values of the root constitute the
vertices of a regular polygon inscribed in a circumference of radius ",/p in the complex
plane; it is given by

1 i Arg(z)+2km

wy = pre n withn € Z and k =0,...,n — 1; (1.12)

therefore

1,4 1 U T
wy = 88¢e'1 = 88 [cos<1—6> ~|—zsm(ﬁ)};
wy = S%GZ%Z% — 8% | cos (Q—W) + Zsm(g—ﬂ)}
i 16 16 ) |’

(1.13)
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Wy = S%Gi%zﬁ _ (E> + 1sin (Eﬂ ;
i 16 16 /|’

1 qtem [ 31w .. (31lm
w3y = 88e'” 4 88 cos(1—6> +zsm(1—6>};

Values of the nth root are particularly important for the finite nth cyclic group;

indeed normalizing them to their common modulus we get the elements of the finite
nth cyclic group. Moreover the regular polygon these values drown in the complex
plane is called cycle graphs in these context and turn out to be very useful in order to
understand isomorphisms between these groups. Cyclic groups plays and important
role in physics for example in some geometrical constructions in string theory or in
the standard models of particle physics.

1.4 Analyticity domain of functions

Given the following functions says which is their analyticity domain:

o f(z) =1log((2—2)*);



e g(2) = 2%

o (z) = log(cos(z));
e q(z) = vz -1

. p(z) = sinli(;jg(z))

Let us assume, in general, the principal branch for the logarithm; therefore the
branch cut is along the negative real axis. The logarithm is analytic in C\ {z|Re(z) <
0UIm(z) = 0} so to find the analyticity domain of f(z) we need to solve the equation

(2—2)?2=—t=2=2+iVt t>0. (1.14)

Therefore f(z) is analytic in C \ {z|z = 2 £iv/t,t > 0}.
Function z* can be rewritten as

2% = eHo9®) (1.15)

since the exponential is analytic in C, analyticity domain of the function g(z) is the
same of log(z), namely C\ {z|Re(z) < 0U Im(z) = 0}.
Thinking as before, for h(z) we need to solve the equation

cos(z) = —t = {cos(x)COSh@) - s, (1.16)

—sin(x)sinh(y) =0
where we used z = z + iy, cos(iy) = cosh(z), sin(iy) = isinh(y) and
cos(x+iy) = cos(x)cos(iy) —sin(x)sin(iy) = cos(x)cosh(y)—isin(x)sinh(y). (1.17)
Form the second equation we have
r=krkeZ or y=0; (1.18)

since cosh(y) > 1 we need to discard solutions with k = 2n with n € Z otherwise the
first equation has no solution (since cos(x) would be positive). On the other hand
solutions with k = 2n + 1 with n € Z are ok and (cos(z) would be negative)

cosh(y) =t with x = (2n+ 1)m and n € Z, (1.19)
whose solution is y € (—o00, +00); these are numbers of the form
I={z]z=02n+1)r+iy withn €Z and y € (—o0, +00)}. (1.20)
If y = 0 then cosh(y) = 1 and

cos(x) = —t = x = arccos(—t) (1.21)



and since t > 0, z € [F, 7] (because the argument must be smaller than 1 and so
—t € [-1,0]), these are numbers of the form

II:= {Z|z:x with x € {g,w]} (1.22)

in the end, function h(z) is analytic in C\ {I U I]}.
Function ¢(z) can be rewritten as

V22— 1 = exlos=-1), (1.23)

so, again, we have
22 —1=—t witht >0, (1.24)

This equation has solutions
P=—t+l=z2=4V/-1t+1 (1.25)
but we have to pay attention at the case t € (1,400), so
c=VI—t iftelo,1];
{z =divt—1 if t € (1,+00);

the first case is the real compact [—1,1] := {z = z|xr € [—1,1]} while the second

(1.26)

case is the imaginary axis Im(z) \ {0}. Therefore, our function in analytical in
C\{[=L1J U Im(2) \ {0}}

The last case is simpler. sin(z) and sinh(z) are entire and entire function form a
closed algebra under composition; therefore the only problems are the zeros of the

denominator
Z24+9=0=z=+3. (1.27)

Therefore, p(z) is analytical in C\ {—3i, 3i}.

1.5 Analytic functions

Given the functions f(z) = z+e¢?, f(z) and g(z) = Z say if they are analytic functions
or not.

Let us start writing the real and imaginary parts of our functions

f(2) =z +iy + " =z + iy + e”[cos(y) + isin(y)] = x + e“cos(y) + i[y + €"sin(y)];

(2) r—iyr —iy v —y*—2vy 2®>—y® | 2y
J T+iyx —iy 22 + y? 2 4+y? a4 y?
(1.28)
Consider f(z), its real and imaginary parts are
u=ux+e"cos(y), v=uy-+esin(y), (1.29)



these are differentiable function in R? and we only need to check Cauchy-Riemann

conditions. These are obviously satisfied since ag—(;) = 0, but let us do the full
computation:
0 0 0 0
8_:3 = e sin(y), a—Z = —e"sin(y) = a—; = —a—z (1.30)
and 0 0 w0
a—Z =1+ ecos(y), 8—Z =1+ €e“cos(y) = a—z = a—z (1.31)
In the and f(z) is an analytic function. Let us see g(z), its real and imaginary parts
are . )
u:u7 v:—&, (1.32)
1.2 + y2 .7)2 + y2
R2

these function are differentiable everywhere in 007"

not analytic since it depends on z, let us check explicitly

However we expect that g(z) is

@ _ 2%y — 2y37 @ _ 2%y + 293 N @ y _@. (1.33)
dxr (224 y?)? 0y (2P 4y?)?  Ox Dy

Last but not least, f(z); obviously this is not an analytic function since f(z) is
Anyway f(z) is antianalytic (this is a universal property: if f(z) is analytic then f(z)
is antianalytic) and satisfies a set of revisited Cauchy-Riemann conditions (where the
minus sing is in the other equation).

1.6 Construction of analytic or antianalytic functions

Consider the real functions f(z,y) = x?+ze?, g(x,y) = cos(x)+y, ¢(z,y) = €3*

sin(3y)
and h(z,y) = 2* — y* + z. which of these functions can be the real or imaginary part
of an analytic or antianalytic function? For those that are, construct the associated

analytic or antianalytic complex functions.

We need to check thet they are harmonic function on the real plane, namely they
satisfy the Poisson equation AU (x,y) = 0. Let us check:

Af(z,y) = (05 + 0y) f(z,y) = 2+ ze” #0;
Ag(x,y) = (03 + 0))g(x,y) = —cos(x) # 0;

) ) 3 - (1.34)
Aq(x,y) = (0; + 0,)h(x,y) = 9e*"sin(3y) — 9e*"sin(3z) = 0.
Ah(z,y) = (02 + 02)h(z,y) =2 —2 =0,

Ounly ¢(z,y) and h(z,y) are harmonic functions, let us construct the analytic and
antianalytic complex functions associated. Let us assume that g(x,y) is the real part



of an analytic complex function, ¢(x,y) = u(x,y) = e3*sin(3y); essentially we have
to solve the Cauchy-Riemann conditions:

ou B ov ov ou

=, = 1.
or Oy Ox oy (1.35)
We have
9 _ 3e* sin(3y) (1.36)
oy y '
and 5
v 3x
- . 1.
e 3e**cos(3y) (1.37)

Integrating 1.36 in y we get v(z,y) up to a z-dependent arbitrary function

v(x,y) = /363xsin(3y)dy\:’/e3x/sm(l)dl = —e*cos(3y) + C(x); (1.38)

3y=l
to fix C(z) we impose 1.37, therefore

ov

7 _ 9.3 / — _ 9,3 / _ _
5 3e*cos(3y) + C (a:)v 3ecos(3y) = C'(x) =0=C(x) =C. (1.39)

1.37

In the and our analytic complex function is

f(2) = u(z,y) +iv(z,y) =
= e3*sin(3y) — ie* cos(3y) + iC = €**(sin(3y) — icos(3y)) + iC = (1.40)

— i3 40 = —ie3EtW) 4O = % i,

Let us repeat the exercise for h(x,y) but using Cauchy-Riemann conditions for
antianalytuc functions

ou  Ov dv Ou

or Oy Oy
Assume that h(z,y) is the imaginary part of an antianalytuc function, h(x,y) =
v(z,y) = 2* — y* + x. We than have

(1.41)

ou
— = 1.42
5 = 2V (1.42)
and 9
U
— =2 1. 1.43
9 T+ (1.43)

Integrating 1.42 in x we get u(z,y) up to a y-dependent arbitrary function

u(z,y) = /dem = 2zy + C(y); (1.44)



to fix C'(y) we impose 1.43, therefore

—=224+C'y) = 2e+1=C(y)=1=Cy) =y +C. (1.45)
1.43

In the and our antianalytic complex function is

f(z) =u(z,y) +iv(z,y) =2zy +y+ C +i(z” —y* + 2) =

./ 9 2 . .9 - (146>
=2zy+i(z*—y ) +y+tizc+C=iz"+iz+C
1.7 Remuvable, polar and essential singularities

Given the complex functions:

1. f(z) = 22,

3. h(z) = —%

(2—2)2%z )

328422242,
4' Q(Z) T 3242224230

5. D(2) = <TI0, (1+2) e

say which kind of singularity they have and if are meromorphic, entire or none of these.

3

5 4~ 0.577216;

Let us begin with some reminders. A isolated singularity in z is called remuvable
if exists finite the limit of the function in this point
lim f(z) =ce C; (1.47)
zZ—20
therefore, defining a cases function that take the value c at z = 2y we get an analytic
function. A singularity in zj is called a pole of order n if exists finite, in this point,
the limit of the function times the monomial m(z; zo;n) = (2 — 2)"
lim m(z; zo;n) f(2) = Im (2 — 20)" f(2) = c € C. (1.48)
2—20 22— 20
A singularity in z; is called essential if does not exist the limit of the function at this
point. We remind also the definition of entire and meromorphic function: a function
is called entire if and only if it has no singularity in C but only in C while it is called
meromorphic if has only polar singularity in C.
Let us now begin with the first function; this is analytic in C \ {2} so we take the
limit for z — 2. Since sin(z — 2) is analytic we can expand it around zp = 2 in series

and this series must converge; this series is the same of the real function sin(x) and
therefore we have (we can use also de I’'Hopital rule, but pay attention: this rule is



due to Lagrange theorem and in general it is not true for a complex function, however
if the function is at least meromorphic we can apply safely the rule)

' ' ZOZO _1)k(z_2 2k+1 ' > —1)*(2 — 2)2k
limy £(2) :lli%z (z(—2)(2k+1§! :llﬂ%z< (;k(+ 1)!) =1 (149)

So, we can define an extension of the function f(z) that is analytical all over C:

[ ifzec/)
f(z) = {1 if 2 =2 . (1.50)

The second function is g(z), we have a singularity in zo = 0 and

1
lim g(z) = lim ex lim —: (1.51)

z—0 z—0 z—0 2,’2 ’
both limits diverge but the second one can be "adjusted", indeed

1 1
limm(z,0,2)— = lim 2*— = 1. (1.52)

z—0 Z2 z—0 2:2

The real problem is the first limit, indeed there is no hope the limit converge when
we multiply it by m(z,0,n) for none n; therefore this limit seems to give a essential
singularity, let us check it. Write z = pe®, so
_1

lime: = lim  er? (1.53)

z=0 (p,0)—(0,0%)
and this limit gives different values for different values of #*. Let us exhibit this
behavior: choose 0* =60, = 0 and 0" = 0, = 7, we get

_1
lim er? = lim er = oo (1.54)
(p,0)—(0,0) (p,0)—(0,0)
while
1 -1 i 1 1
lim e, = lim er'2 = lim e » = lim {cos <—) —isin(—)]

(p,0)—(0,3) (p,0)—(0,%) (p,0)—(0,%) (p,8)—(0,3) P P

(1.55)

which is complex and does not exist.

It is now time of h(z), this seems to have only polar singularities since we have no
numerator to expand in series. Singularity point are in zp = 0 and 2; = 2 so let us
consider the limits

. . 1 1
and 1



no good novels; let us try with

lim m(2; 2; 2)h(2) = lim(z — 2)2ﬁ = lig%% = % (1.58)
now it is better. So, zp = 0 is a pole of order 1 while z; = 2 is a pole of order 2 and,
therefore, the function is a meromorphic one.

Since ¢(z) is a rational function and the denominator is a polynomial we expect this
is a meromorphic function; the singularity points are the roots of the polynomial at
the denominator, so

32422+ 22 =0=2(22+22+3)=0 (1.59)

from which we find

24 VE—12 —2+iV8 —2—4—12 —-2—i/8
= 722_ .

1.
2 2 2 2 (1.60)

20:0,211:

We can now rewrite ¢(z) as

322+ 22242

z—20)(z—21)(z — 22);

(1.61)

q(z) = (

we immediately recognize that zg, z; and 29 are all poles of degree 1. The possibility
to decompose a polynomial into multiplication of monomials containing the roots of
the polynomial itself is granted by the fundamental theorem of algebra, according to
which, any polynomial of degree n admits exactly n roots (with multiplicity) only in
a algebraic closed field (in this case C) which means that any polynomial of degree
n > 1 admits at least one root in the field. It is interesting to note that, despite this
possibility, only solutions of polynomial with degree n < 4 can always be write down
using radicals. This is a theorem based on Galois theory and permutation groups.
It is the turn of I'(2), this is a very important function called gamma Euler function.
First let us massage the function

rez) =" ﬁ nes) oot ﬁ —— )er (1.62)
zZ) = en — en; .
z n z n+z '

n=1 n=1

this an analytic function in C\ Z_ but has singularities in z € Z_. Seems evident that
these singularities are polar ones and the gamma function is meromorphic, indeed

e 5

. . n z "~
lgrg)m(z,(), DI(z) = llg(l)z . U <n+z)€n = H 1=1 (1.63)

— 10 —



and

6_'7’3 > n z st
zjg*m(z’ n*; DI'(2) ZJIEL*(Z+H ) 2 H (n+z)6

n=1 n=1
n*—1 [%S)
e n _n* n _nr . n* =
=— H e H e lim (z+n") ent =
n* n—n* n—n* Z——n* n*+ z
n=1 n=nx+1
* n*—1 (e e] *
e n Cn* n Cn* B -1
=— H e H e w(nfe ) = (=1 :
n* n —n* n—n* n*|
n=1 n=nx+1
(1.64)

This function plays a crucial role in the renormalization techniques of Quantum Field
Theory (specially in dimensional regulazization where infinites are replaced by poles
of Euler’s gamma function).

2 Complex integration

2.1 Complex integral and line integrals

Consider the complex function f(z) = sin(z)e* and perform its integration along a
snapped line from (0,0) to (27, im) which pass through (0, i7) using the definition of
complex integral.

The very definition would be using integral sums, however we know that these
converges to Riemann line integrals, and we have

= /f(z)dz _ /[u(m,y) + iv(a, y))de + idy] =

= /u(x, y)dx — v(x,y)dy + i / u(z,y)dy + v(z,y)dz.

v ol

So we need to find real and imaginary parts, let us start with sin(z)

sin(z) = sin(z+iy) = sin(z)con(iy)+cos(z)sin(iy) = sin(z)cosh(y)+icos(x)sinh(y),

(2.2)
while
e = "t = e"[cos(y) + isin(y)]; (2.3)
therefore we have
u(z,y) = sin(x)cosh(y)e®cos(y) — cos(x)sinh(y)e*sin(y); (2.4)

T

v(z,y) = sin(x)cosh(y)e*sin(y) + cos(x)sinh(y)e®cos(y).

The integration path is given by two straight lines, one from (0,0) to (0,47) and the
other one from (0, i) to (27, im); so along the first line only y varies while along the

— 11 -



second one only x varies. using property of integral we can split it into integrals along
the two lines I = I, + I,,; therefore for the first line v,

I =- / o(0,y)dy + i / u(0,y)dy =
m m (2.5)

= — /07r cos(y)sinh(y)dy — i /07T sin(y)sinh(y)dy

while for the second line ~,

I, = /W2 u(z,m)dx + 1 /72 v(z, m)dr = (2.6)

2m 2m
= —/ sin(x)cosh(mw)e®dr — z/ cos(z)sinh(m)e®dz.
0 0

These integrals are solved using repeated integration by parts [ fdg = fg — [ gdf,
let us show how works in the case

/cos(y)smh(y)dy. (2.7)
Take f = cos(y) and dg = sinh(y)dy, therefore df = —sin(y)dy and g = cosh(y) and
/cos(y)sinh(y)dy = cos(y)cosh(y) + /cosh(y)sin(y)dy; (2.8)

now take f = sin(y) and dg = cosh(y)dy, therefore df = cos(y)dy and g = sinh(y),
SO

/cosh(y)sz’n(y)dy = sin(y)sinh(y) — /sinh(y)cos(y)dy. (2.9)
To sum up, we have
2 / sinh(y)cos(y)dy = cos(y)cosh(y) + sin(y)sinh(y); (2.10)
in the end
1
/smh(y)cos(y)dy = §[cos(y)cosh(y) + sin(y)sinh(y)]. (2.11)
The other integrals are very similar, the result is
1 :
I, = (1 + cosh(r)) - %smh(w), (2.12)
and h inh
172 _ 0032(71') (627r _ 1) + M(l _ 627r). (213)
Finally
1 ' h isinh
I = —(14 cosh(m)) — 3smh(7r) + 28 () (¥ —1) + M(l — ') =

1
= —(14e*) —ie™ .

[\]

- 12 —



2.2 Cauchy theorem and Morera theorem

Given the following complex functions:

L f(2)
2. g(2) = sin(z)cos(z);
(2)

3. h
4. T(2) = [;"s* te®ds for Re(z) > 1;
5. C(z) =>02, & for Re(z) > 1;

say if they are analytic and compute their integrals along the curve v := {z €

Cllz—2|=1}

Function f(z) is the product of ¢* and —L5; €* is an analytic function while ¢
has a polar singularity in 2y = 8, however the curve 7 is a circumference of radius
R =1 and center zy = 2 and in the domain D with frontiers 0D = 7 the function

f(2) is analytical, therefore by Cauchy theorem we get

/f(Z)dz =0. (2.15)

Functions ¢(z) and h(z) are even more simpler cases. Indeed they are just combination
or composition of analytic functions, so they are analytic; therefore by Cauchy theorem
their integrals along every closed curve in the complex plane (including «y) is vanishing.
We now consider more interesting cases. Let us start with the gamma function; first
we would prove that this is analytical but we can do more, we can show at once
that this function in analytical and its integral along every closed line is zero. Let us

consider
/ [(z)dz = / / s e *dsdz = / (/ sz_le_sdz) ds =
= / e_s(/ sz_ldz) ds,
0 c
since s*~! is surely an analytic function in the domain of integration and inside it,

the integral [, s* 'dz = 0 due to Cauchy theorem; we have got that

/ I(2)dz = 0 (2.17)
c
for every closed curve, therefore thanks to Morera theorem (that is, if a continuous,

complex-valued function defined on an open set D in the complex plane has vanishing
integral along any closed curve in D, the function must be analytical) we can conclude

— 13 —



that I'(z) is an analytical function. Similar considerations hold for {(z) called Riemann
¢ function, indeed

LC(Z)dZZ/Ci%dzzniO;L%ZO, (2.18)

since # is an analytic function; again thanks to Morera theorem we conclude that
Riemann ( function is analytic. This function plays a crucial role in mathematics
due to its important connection with the theory of prime numbers.

2.3 Principal value integrals, circumference arcs and complex
integration

Compute the integrals

.I:f+zb ()d _f—i-zbld

ia 23

Il = limp—wo f]D):={\Z|=P \ arg(z)E[

[} E) =l o) | g [7.5]3 €

i T
673 673
3

INT = lim, o fo* p(z)dz = lim,_, fo* 6132(4(;_1) — %L)dz;

IV:fQ %dz:f@ 226—;2(12 with Q is the square of vertex 1,i,—1, —i;

V= fCTp,QH—?v?]l 2)dz = fC+ 29 2dz (clockwise);
o=

?P—

f[o i1+ [0,1-44] j(z)dz = f[o’i]ﬂi’HiH[O’Hﬂ(]m(z)—Re(z)—3i(Re(z)2))dz;
o VI = fcpzl G(z)dz = pr:1 @dz (counterclockwise)

o VIII = fop:2 H(z)dz = fcp:2 22 + 23 + 2*(log(z) + 1)dz (counterclockwise)

Function ¢(z) has a polar singularity in z = 0 therefore we need to split the
integral in the neighborhood of the singular point, moreover we change variable,
z = 1y, since the path is along the imaginary axis; we get

. 0—e 1 . . +b 1
= (f, )+ (] wr) -
0—e d +b d
T (L)
—a Yy =0 0+€ Yy
+b
0+e) B

1 1 i 1 1
2¢2 2a? e—0 \ 202 2€2 )’

(2.19)
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which is not define, therefore we need to use the Cauchy’s principal value

1 1 1 1 1 1
PVl)=ln|(——-—+-—75—— — - — 2.20
(I) = liny <262 2 21 262) 22 22 (2.20)
Let us consider the case I1, to apply whatever of the lemmas for infinite arcs we need
to show that zh(z) —,0 0 or to a constant ¢ uniformly. Therefore we need to show
that 2f(2) —=,-c 0 uniformly

—plcos(0)+isen(6 —pcos( ) —isen( —pcos(0)

V= pe ,

(2.21)
this function converge uniformly to zero in the I and IV quadrants (where 6 € [— R %}
so that 0 < cos(f) < 1) since we have

0 <|2f(2)] = ple *| = ple | = N =ple

pe PO < peP — 0. (2.22)

Since the integration path is the circular sector from 30° to 60°, the integral gives

zero. If the function converged to a constant ¢ instead of zero the integral would give

zc(g - %) =ic%. Case 1] seems easy, we use Jordan’s lemma and we can conclude

that the integral is zero since 3 > 0. That is ok, but we need to check that the

function p(z) converge uniformly to zero. Let us compute the modulus of m

53 B et
o 4(p3e3d —

P s 1 i forml

- 0o — uniformly;
D| 4P -1 " 41 7 !
(2.23)

the last inequality is due to the fact that |u — v| > ||u| — |v||. Therefore the function

P(2) = p—o0 0 uniformly and the Jordan’s lemma can be applied. Let us look case IV,
function ¢(z) = €*(3+ z)"2 = 7~ 21963+2) i5 analytic in C\ D where D = —3 — ¢ with
t € [0,00) is the branch cut of the principal branch of the logarithm. Therefore we
can use the Cauchy formula (recall that complex integrals are well defined also if the
function is not defined or not continuous in a finite number of point along the path)

0 =55 [ o 224

where w = 0 and n = 1, therefore we have

z z / .
/ ¢ 2w <e_) _ 2m-(1 ~ ;)ez;zogw _ i
022V3+z U \\V3+z2/) ., 2(3+ 2) 0 32/5 )
2.25

Case V is simply and since [(z) is not analytical we expect its integral along the path
to be different from zero. Let us split the integral as

/ l(z)dz:/ l(z)dz+/ [(2)dz, (2.26)
ct ,H=2.2] ct ) [-2,2]

%PZ ?P—
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and let us parametrize the paths as

C;ﬂ:%% with 0 < 0 < m;
-

(2.27)
[-2,2] =t with—2<t<2.

We use the definition

/ I(2)dz = — / 10 (1) (2.28)

where the minus is due to the orientation of the integation path. Using dz = d(2¢%) =
2¢idf) we have

T et . LI 2% " 9 4
/ l(z)dz = / %26“92'6[0 = 22’/ e3do = —2_63’9 e ————
CT 0 2671 0 3Z 0 3(_1 — 1) 3
p=2
’ (2.29)
and
2 ¢ 2
/ l(z)dz = / -dt =t| =4. (2.30)
[~2,2] ot 9
In the end we have got
4 8
/ l(2)dz = —-+4=<. (2.31)
CIPZQH—Q,Q} 3 3

It is now time of case VI, and again, since j(z) is not analytical we expect its integral
along the path to be different from zero; let us split again the integral as

/‘ j@@z/j@@+/ j@@+/ i()de (2.32)
[0,i}+[i,l+i}+[0,l+i] [O,i] [i,l-f‘i} [0,1+i]

and let us parametrize the paths as

0,7] =1y with 0 <y <1;
i, 1+i]=a+i with0<az <1 (2.33)
[0,1+i]:t+it with 0 <t <1;

Using again the definition we have

1 22
/ j(z)dz = / ylidy = i—
(0] 0 2

1

1
57
0 2

1 2 3 1
1 1
/ j(z)dz:/(1—x—3im2)dm:(m—x——3z’$—) =l—--—i==—4%
[i,1+4] 0 2 3 /10 2 2
1 t3 1 (1 .
/ j@ﬁh:i/(t—t—&ﬁﬂ1+0ﬁ:r%mj+ﬂ<—> _ sl
[0,1+4] 0 3/ 3
(2.34)
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In the end

N W

1
Lt ifl-i=

— . 2.
5135 i (2.35)

j(z)dz =

DO W

A,i]—&—[i,l—&—i]—&—[(),l—i—i]

Consider now case V' I1. The function is polydrome and we have to choose a branch cut;
however this is not so important since the cut intersect just one point of the integration
path and so the integral is well defined. The only thing we have to care is to choose
the branch consistently with the parametrization of the path. For example we can
choose the branch with 0 < arg(z) < 27 and the integration parameter as 0 < 6 < 2.
The integral gives (using the definition and that In(z) = In(pe) = In(1) + i6)

27 2T
/ G()dz = / e (In(1) + i0)eido / 20d0 —
Cp:1 0 0

o g |2 (2.36)
:—/ 0df = ——| = —27%
0 2
The last case can be divided in three integrals; let z = re’ therefore we have
2 = 3o,
23 = rieist. (2.37)

e's’;
(log(z) + 1) = 299 (log(z) + 1);

all this function are polydrome and we have to choose a branch. Let us choose the
principal one, —7m < # < 7; therefore we have a branch cut in the negative real axis
and the curve must be modified into a circumference C7_, with parameter given by
—m+€ <0 <m—ein the limit € — 0. In this region and on C;_,, our functions are
well defined and continuous, therefore they admits a primitive and we can see that

(%Zg) :Z%; (2.38)
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So we have

H(z)dz = / 2idz + / Zidz + / 2*(log(2) + 1)dz =
Cpes

Cp:Q Cp:Q Cp72
= lim (/ z2dz + / z3dz + / 2*(log(z) + 1)dz) =
e—0 € € €
Cp:? Cp:2 p=2
92 . 2=2¢i(m—¢) 3 2=2¢i(m—¢) z=2¢t(m—¢)
= lim (—zz 4+ =23 427 > _
e—0 5 2=92¢t(—7+e€) 7 2=2¢t(—7+e€) 2=2¢t(—T+e) (239)
= lim (223 (diﬁf—e) - e’i(—”e)) ) +
e—0 5
. 3 7 T T
+lim | =25 ( €507 —¢is(=mrO ) ) 4
e—0 7

+ lim (e%“muf)g(z)ﬂ(w—e)) _ 626“”+€><log(2>+i<—7r+e>’>

e—0

where we have used the limit of € — 0 since we have to be careful on the branch cut.
Now we need some algebra:

2 , , 44 5
lim (—23 (ezg(”_e) - ezg(_”“))) = lim <—1233m<—(7r — 6))) =
e—=0 \ D e—=0 \ D 2

. (2.40)
— ﬁg%sm §7T - ﬁgg,
2 5t
3 67 7

lim 223 (309 _ i3m0 ) ) = lim ( =28 sin —(m—e)| ) =
e—0 7 e—0 7 9 41)

6i_x . (7 3iV3_ 1 2
= —23gsin| = | = 23,

7 3 7

111’% (€2€i(ﬂ5)(log(2)+i(ﬂ'—6)) _ 62ei(7r+6)(log(2)+i(—7r+5))> _ 625iw(log(2)+iﬂ.) _ 6267”(log(2)—i7r) _
€E—>

_ —2llog(2)+im) _ ,~2(log(2)—im) _ ,—2log(2) [e2m _ i) = _QiSi”(QW) —0
1 4 ,
=1
(2.42)
finally
44 3iv/'3
/ H(z)dz = —2% + W3y: (2.43)
Cps 5 7

3 Series and residues

3.1 Taylor series

Assuming for the polyhydrome functions the principal branch, compute the Taylor
expansion of the following functions:
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o f(z)=[5e" ‘dw for z =0;
e g(2) = (24 1)log(1+2%) for z =0;
o h(z) =log(}2) for z =0;

(
(
p(2) = log(z?) for z=1,—1;
(2) = for 2 = 0.

®q

szn(z)

For the first case we have ¢“’; we can expand it in Taylor series using the
expansion for the exponential and changing w — w?

o0 (o) 271
:}%%— 2%%? (3.1)

The radius of convergence of the series is all C since e*” is an entire function, moreover
the integration path is contained in the convergence domain of the series and the
function is continuous (it is analytical) on this path; so we can exchange the integral
and the sum. We get

z
22n+1

00 zw2n 0 1w2n+1
f(Z):Z/O F:;m%l%—l 0: (2n + 1)n!”

Function g(z) is not analytical and the Taylor expansion it is possible only in the

(3.2)

analytical domain, so let us find it. As usual we impose the equation (for the principal
branch)
1+2°2=—t, t>0, (3.3)

whose solutions are

z=+V—t—1=+iV1+t, t>0. (3.4)

The function is analytical in C\ (—oo, —1] U [1, +00); therefore Taylor expansion
exists in a circle of radius R < 1 centered in zy = 0. Using the Taylor expansion for
the logarithm we get

g(z z+1§:
n=1

Let us now study function h(z), again this is analytical in C minus the se given by

n+1 n n+1

:E: %“+§: 2 (3.5)

n=1

the solution of

1 1+t
1+Z:—t t>20=>1+z2=—t+z2t=>2—z2t= —t—1:>z_—t+1 t>0; (3.6)
_Z J—

this equation represents the real semiaxis (—oo, —1] if t € (0,17) and [1,+00) if
t € (11, 00); the function is analytic in C \ {(—o0, —1] U [1,400)}. Therefore Taylor
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expansion is possible only in 2y = 0 and with convergence radius R = 1; in this region

we have
d 1+ 2 l—z(1—z+1+2) 2 2 =
dz Og(l—z) 1+2z (1—2)2 (1+2)(1-2) 1-—22 ;Z ’
(3.7)
where we used the geometric series representation. So
l 142 ; 1+2 l 140 ? dl 14w p
0 =lo —log| —— | = —log| —— |dw =
1= 1= IN1-0 , dw \1T—w
\ﬁ,_/
(3.8)

e 2n+1 z e 2n+1

:2/ Zw2"dw—222n+1 2022+1.

The hypothesis under which we can exchange the integral and sum are obviously

satisfied since the path we consider is in the ball B;(0) (otherwise the series we have
got does not converge) and the function is analytical in this ball.
Consider now function p(z), as usual we have to solve

=t t>0, (3.9)

solutions are

z=+ivt, t>0 (3.10)

which represent the whole imaginary axis and the function is analytic in C\ {Re(z) =
0}. If we center the expansion in zp = —1,1 the maximum radius of convergence is
R =1 (otherwise we hit the imaginary axis where the function is not analytic). Note
that (in the analyticity domain)

d 2 —2 =21 - usefulif z+1<1
_lOg(ZQ) — Z _ {z;ll 117(z+1) f f (311)
dz < =i = 21+(271) useful if z—1<1
we have for |z + 1| < 1 (expansion centered in zg = —1)
0g(2*) — og / w = / - +1 /1Zw+) w

k=0

o] 2 o0 1 k+1
:—QZ/ (w+1)kdw:—22u;
k=07 1 k=0 k41

(3.12)
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while for |z — 1] < 1 (expansion centered in zp = 1)

log(2*) — log /—dw—Q/ 1+ —2/ *(w —1)*dw =
1 1

0 k:(Z _ 1)k+1

:2;; /w — Dkdw =2 (_U'_EIT_

k=0

(3.13)
The last function seems easy but we need to pay attention. Fist of all we note that
the function is analytic in C \ {z € C|z = k7, k € Z}, therefore the Taylor expansion
in zg = 0 has radius R = 7; in general the expansion around z = zy # knw with k € Z
has radius R = 7. Let us use the finite expansion method:

r 1 1 1 B
sin(z2)  z-F4gH-H+. 2l-(G-H+H+.)

1 22 2t 0 22 2t S 2

= —|1 _ = — — _— = = — =

B 1 +Z2 24 24 28 5 28 n 26 n B

Tz 31 50 31317 315! 313!
L + L + ’ + ..

=4 24 —23
z 6 360

note that we used —— = > ¢~ h"(2) that holds if h(z) < 1 which is satisfied in this

kind of expansmns

3.2 Laurent series

Assuming for the polyhydrome functions the principal branch, compute the Laurent
expansion of the following functions:

o f(2)= (Z(liz))Q for zo = 0;

_ _3+=z 0N
e g(z) = Faaz for zp=0;

!/

* 1(z) = () =0

e q(z2) = Zsii(z) for zp =0.

Let us begin with f(z); this function has singularities in z = 0 and z = 1 therefore
the annular regions where the function is analytic are A(0,0,1) and A(0, 1,00). In
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the first ring we have

1 11 1 d 1 1d [, 1l d ,
—<Z<1_Z>>z—;—<1_z>2—§@<—1_ : )—_d_(z>__zd_ -
<1

1 (0.9} oo
== an"’l = an”’?’;
n=1 n=1
(3.15)

while in the second ring we have to rename the variable, indeed using w = % we have
that |w| < 1 (we are in the ring A(0, 1, c0))

1 w? w? w? L d 1
= — o = W — - —
G- (-1 (=P d-w " dw\l-w
<1
= w4i iw" = w4§: iw" = w4§:nw”_1 = inw’”?’ =
dw n=0 n=0 dw n=1 n=1
= ang””.
n=1
(3.16)

Note that we can exchange the sums and the derivatives because we are in the analytic
domain. Moreover, fundamental for this kind of exercises are the expansions

1 = 1
1—z—;z’ 142

M8

(=)™ for|z| <1 (3.17)

Il
o

n

Function ¢(z) has singularities in z = 0 and z = 2 so we can expand in Laurent series
in the rings A(0,0,2) and A(0,2,00). In the first ring we have

3+z 3+2 34z 1 _3+z§:( 1)n(2>"_
23 4 222 222(1+ % ) 222 1—2 222 ot 2
<~
<1
- n(3+z) < " S n 3 n—2 S n 1 n—1,
:;(_1) 9,2 9 :;(_1) 2n+1Z +HZ:%(_1) 2n+1z ’
(3.18)
while in the ring A(0, 2, 00) we have
3+z 34+ 2z _3+z 1 _3+zi( 1)n(2>n
3 2~ - 3 2~ .3 - P
25+ 2z 23(1+ 2 ) z2 1+ 2 z e~ z
z
\<,1./ (3.19)
:Z(_l) 3Zn+3 +Z(_1) 2
n=0 n=0
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For function p(z) we need to expand using the finite expansion method function

;(z); we have

z2sinh
11 1 1 1 B
2sinh(z) R+ 4244+ BlyZ 4z a4
1 22 4 5 22 4 28 2
S I T T ) - =
z3[ (3!+5!+7!+ )+(3!+5!+7!+ ) ] (3.20)
1 22 2t 28 226 B
1 T I T TR TR T R
1 1+ 7 n
== —+—2z
23 6z 360

and taking the derivative we get

1 3 1T
—_— | = —+ =+ .. 3.21
(z%inh(z)) 24 322 * 360 i (3:21)

For function ¢(z) we can use the expansion find before,

1 22 2t 0 .22 24 | 258 2
- -1 o4 4 | =
Z{*(:&! 5T >+<3! T T >+ 1 (3.22)

_11+22 Z4+Z4+ZG 226+ B
oz 31 5 3130 T 7 T30 ) T
S R
- - =z —2Z
2 67 360
so we have
win(z)  zz-gag-gtbe 2l-(F-mtat.

(
_1hn i Z4+26+ + z Z4+ZG+ 2+ =
T CIE T T A T (R A R
6

:11|:1+Z_2_Z_4+Z_4+Z_6_22_+m:|:
zZz 3! 5! 313t 7! 315!
17,

:;+6+ﬁz + ...

3.3 Residues

Determine the nature of the singularities and compute, when possible, the residues of

the following functions:

e a generic function ¢(z) with a pole of order m;
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* f(z):m;

[ I(Z) = 233:2222;

¢ 9(2) = zlog(2);

1 .
* Mz) = gary;

* p(Z) = z%jn(z)'
The first case is a useful formula to compute residues in the case of polar singularities.
Suppose the function has a pole of order m in z = zy; there exist € > 0 such that the
Laurent expansion exists (the negative part end with a monomial (z — z)™™)

b b b
. k 1 2 m
ak(z Zo) + 7 — 2 + (2—20)2 +”'+—<Z—Zo)m’

(3.24)

Il
1M

if we multiply both member by (z — z¢)™ in order to isolate the coefficients b, we get
(z—20)"q(2) = > ar(z = 20)" ™+ bi(z = 20)" "+ ba(z — 20)" 7+ ... + by (3.25)
=0

We need to compute b; so we take m — 1 derivatives with respect to z in order to
remove the z-dependence in the term with b;:

dm—l e
W[(z 20)™ Z ar(k+m) (k+m—1)...(k+2)(z—20) T 4-by (m—1)(m—2)...1.
k=0
(3.26)
It is now easy to see that we need to multiply by =] and to take the limit
) 1 dm—l .
by = lim [(z — 20)"q(2)] (3.27)

2=z (m — 1)1 dzm—1

and this is the residue of a pole of order m.
Let us consider now function f(z), we can Taylor expand

1 1 1 F(z)
f(z) = 22 .38 >3 =3 S 22 2 =5
(Z—F?‘i‘g—i—...)(z—g—i-...) Z(1+§+§+...)(1—§+...) z
(3.28)
recall that if we have a function with a polar singularity of order m we can always
write -
f(z)
2) = 3.29
1) = 22 (329)
and 5 o)
f(z0)™
Res.—., f(2) (m =11 (3.30)
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In our case, we have a pole in zy = 0 of order m = 2 and therefore

Res,_of(z) = f(())(l) =

B T+HE4.. —£4 ...

- z 22 22 B z 22 22
A+5+5+. )20 -%5+.) (A+5+5+.)0-%+..)2 .2
1

2

(3.31)
Function {(z) is similar to the previous case, indeed for the singularity in z = 0 (doble

pole)

3+z 1342  lo(2)

I(2) = ——— == S 3.32
(2) 25 +222 22242 227 (3.32)
w0 2 3 1
= +z—-—3—2z
Res,—ol(2) = lp(0) = "——"— "1 = ——; 3.33
€S52=0 (Z) 0( ) (2 + 2)2 o 4’ ( )
while for the singularity in z = —2 (simple pole)
34z 1 3+z2
(2) 234222 242z 227 (3.34)
SO
. 1 3+2z 1
Res,— 5l(z) = 21_1)11_12(2 +2) T s 2 1 (3.35)

Function g(z) is tricky, indeed since z = 0 is not an isolated singularity there is no
ring where a Laurent expansion is possible and no residue exists.

Function h(z) can be expanded in Laurent series using the Taylor expansion log(1 +
)=y %z” that converge for |z| < 1; therefore

IR 1 1 1 B
wm1+zf_z—%i%§+m._21+(—§+§+“)_
:%1—<—f+z—2+...)+(—3+Z—2+...>2+..}: (3.36)
z 2 3 2 3
1 1 z 22
BERC TR

and so z = 0 is a simple pole and the residues (the coefficient of z71) is simply
Res,—g Toa(

1 ) =1

1+2z :
Let us consider the last case. We recall that if we have a function p(z) = 7 ;Eg with
p1(z) and po(2) analytic in z = zy and if py(z0) # 0,p5(20) # 0 then if 2, is a simple

pole we have

_ p1(20)
Ph(20)
In our case we have a series of simple poles in z, = nm with n € Z \ {0} and a pole

Res,—.,p(z) (3.37)

of order m = 3 in zg = 0. Therefore, since in our case we have

pi(z) =€, pa(z) = 22sin(z) = ph(2) = 2zsin(z) + 22cos(z) (3.38)
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and p;(z) and ph(z) are analytical in z = z, we can compute the residue as

nm nm

(& e

Res.—.,p(z) = n2e(—1)n R

(3.39)

To compute the residue in z5 = 0 we need to compute the Laurent expansion of the
function; we have

2 3 2 3
) l+z+5+5+.. 1l+z2+5+%5+..
e = — =
P 2e-2+.) 2 1-(2+.)
1 22 28 22 22 2 (3.40)
=—(1 —+ =4+ ... )1 — 4+ ... — 4+ .. | = )
IAREIEN WEN WERE TS
I T I L
23 22 22 6z 6 23 22 32 6

where the last ... stands for positive powers of z. In the end

Res,_op(z) = 2 (3.41)

4 Residues integral

4.1 Integration using residues theorem

Solve the following integrals using the residues theorem.

2
o | — Qo do

0 1+4acos(0) —l<a< 1’

__ [too zdx .
o Il = f_oo (22+1)(22+2212)

o [II =PV [ 2,
. IV:fj:Oo Cf)i;‘(li) —-1l<a<l;

o I — erOO zsin(x)

—co  x241

Let us consider the first integral, we know that

o o i0 0 6 —if\ ;.0
/ f(cos(e),sm(e))dezf f(e rte ¢ - )Z_e, 6 =
0 0

2 et
T ((0) +(0) A(0) + () Y (0)
- [ (T e - e

_/ 2427t 2+ 27N\ dz
-/, 2 7 2 )iz
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where v(0) = € with 0 < 6 < 27. Therefore,

2
T do 1 d 2 1
/ - / e = | e (4.2)
o 1+ acos(0) y14a(Z=)iz  ia ), 22+ Z+1

now

2 4
2 Ve 4 24212 11— a?
24 1m0 = = = =, (4.3)
a

a 2

and we note that |z_| > 1 and |z,| < 1. So only z, is inside the circumference v and
this is a simple pole; therefore for residues theorem we have

2 1 2 1 4 1

- QTCZZ = ,—27T7;RGSZ:Z+2T = —WRGSZ:Z+ =

ia ), 2?4+ = + 1 ia 2+Z+1  a (z—24)(z— 22)
4 1 4 1 2

=— lim (2 — 2z4) = =

a =zt (z—z)(z—2) az—2 Ji-a

(4.4)
For case II we can use directly residues integral since f(z) = m has only
polar singularities in 22 +1=10 = 24 = 44 and 22 + 22 +2 =0 = 2/, = 2548 _
—1 + 4 with residues given by
z
Resz:zif(z> =lim, ., (2 — 24) (z—2)(z — 2 )(2 + 22 + 2) =
z
T e-@)E@+2:+2)| ., (4.5)
+1i 1F2
T 2i(—1+2i+2) 10
and .
Res.—., f(z) = lim,_, (2 — Z/i)(zg TG
z
@D (LF )|, (4.6)
-1+ —1+3
T (IF20)(£2) 10

Choosing as path of integration the semicircumference in the upper half plane with
radius R, we enclose only z; and 2/, so in the limit R — oo we get

Foo xdx 1—-2¢ —14 3¢ ) T
/_oo (224 1) (x> 422+ 2) m( * ) 10 5 (4.7)

Note that for a rational function f(z) = 5:1—((?) where P,(z) ans Q,(x) are polynomial

of degree n and m (with m > n + 1) respectively we get that the integral on the
semicircumference goes to zero when R — oo.
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Let us now consider case I11; the function has pole in
B ol=0=z=Vi=e3", k=012 (4.8)
we note that zg is a real pole (this is why the principal value). Let us choose the
semicircumference in the upper half plane with radius R plus a little circumference
of radius r around zy; this path encloses the simple pole in z = z; whose residues is
given by

S

(z1) z e'T
Res,—,, = = — = —0 4.9
€S f(z> q,(zl) 322 s 3eT ( )

where we write f(z) = sgz; with p(z) = z and ¢(z) = 2 — 1. In the limit R — oo the

integral on the semicircumference in the upper half plane goes to zero (like in case
IT) while in the limit » — 0 we have for a generic function g(z) that

lim [ g(2)dz = £irRes.—.g(2), (4.10)
r—0 'Yv:j:

where 7 (0) = 2/ + re®™ where —7 < 6 < 0 and 2’ is the simple pole of the function

g(2). In our case we have 7. = 25 + e~ and so

lim/ f(2)dz =irRes,—.,f(z) = im
T

r—0

= iT—. 411
mg ( )

in the end

oo d ) 247
PV / o - = 2miRes.—., f(2) — inRes.., f(2) = = [263 - 11. (4.12)

3 _
o T 3

eaz

wosh(z) has polar singularity in

Let us consider case IV. Function f(z) =

cosh(z) = cosh(x + iy) = cosh(x)cosh(iy) + sinh(z)sinh(iy) =

= cosh(z)cos(y) + isinh(z)sin(y) =0 =y = kg Uz =0 withkeZ)\{0};
(4.13)
let us call these points z;. We consider as integration path the square given by

Nn@)=r —-R<x<R;
=R+ 0<y <,
V2(y) vy Sy (4.14)
v3(x) =z +ir R<z < —R;
Yly) =—R+iy 7<y<0.
The integral on v;(z) is
R axr
e
d 4.15
/_R cosh(z) . (4.15)
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that is our integral when R — oo; the integral on vo(y) is

™ (R+iy) p
_ 4.16
/o cosh(R + iy) 4 (4.16)
a(R+1y) et ™ ea(R-i-iy) J eolt
_ <T—F5——7 —0 4.17
‘/0 cosh(R + 1y) ‘ _/0 cosh(R—I—z'y)‘ y_ﬂé(ethe—R) ’ (4.17)
for R — oo and a < 1; moreover we used cosh(R+im) = —cosh(R). integral on 73(z)
is n (wtim) "
/ﬁ R ::&”/ B (4.18)
r cosh(z +im)dx _g cosh(x)dx
we used again cosh(x + im) = —cosh(x); this is our integral multiplied by €™ when

R — o0; the last integral is

0 6a(—R-‘riy) p
4.19
/7r cosh(—R + iy) v (4.19)

SO

™ ea(—R—l—iy) p ™
— <
‘ /0 cosh(—R + iy) y‘ _/0

for R — oo and a > —1. Therefore

€_G'R

ea(—R+iy) J
D —
cosh(—R + iy) ‘ v= 7r%(eR + e R)

— 0, (4.20)

/4m ©_de(1+ ) = 2miR omi— o (4.21)
x ") = 2miRes,—,, = 2mi— =2mi———— (4.
oo COSh() ! sinh(z) | _.x AT
z=iy smh(?)
—_————
=isin(g)=i
in the end N .
< e 2me**2
dr = — 4.22
/_OO cosh(z) T 14 i (422)

= %, this has simple pole in
z = =+1, so consider the path given by the semicircumference in the upper half plane

Let us consider the last case. Consider function f(z) =
with radius R plus the interval from —R to R. This path encloses the pole in z =1

but for Jordan’s lemma the integral on the semicircumference in the upper half plane
is zero in the limit R — oco. Therefore

o wsin(z) T et ,
/_OO o :[m/_oo e :Im<27mResz:if(z)) =

iz i o—1
= Im|( 2milim(z — Z)L = Im(2mlS ) =
2 (z —1i)(z +1) 2i
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5 Asymptotic developments and integral estimates

5.1 Integration by parts

Compute the asymptotic development up to second order and estimates the rest for
the following integrals:

L[ ettt
2. f;eimtlog(t)dt

Let us consider the first integral; this is of Laplace type therefore we know that

+00 n-1 (t2)(k)(0) 1 [
/ e Midt =) ot / e~ ()M (1) dt (5.1)
0 om0 0
where the last integral it the rest. In our case we have
+oo L 2\ (k) oo
—xty3 (t ) (O) 1 —xt (12\(2 .
/0 e "3 dt ~ ZW Rl (%)@ (¢)dt; (5.2)

we have (t2)(¢) = 2, (t)D () = 2t, (1)@ (t) = 2 so

—+o00

too 2 [ 21 2
/ €mtt3dt ~ —2/ e_xtdt = ——2—€_xt = 3 (53)
0 x? J 2 0 x
The second case in instead of Fourier type, therefore
5 .
/ e log(t)dt =
2
n—1 Z.kJrl . in 5 (54>
= = [* " (log ()M (a) — €™ (log(£))™ (b)] + / ¢ (log(t)) ™ (t)dt
—at+ 1 " Jy
In our case
5 .
/ e log(t)dt ~
2
S 2 k 5i k A t 2
~ Y e oy )V a) — #og(0) P 1) - [ e ltog(t) e)ar
—at+ 1 T2 Jy
(5.5)
and (log(t))”(t) = log(t), (log(t))V(t) = §, (log(t))*)(t) = —3; therefore
5 .
/ e log(t)dt ~
2 5.6
2[621:3[0 (2) eBleo (5)] _ [€2i$1 eSix } + i /5 eixtldt ( )
x g I x 2 5" x? 2
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5.2 Integrals estimation

Estimates the following integrals:
1 [ erlsin®lgq,
10 'L:p (t3—4t)
2. )og(t)dt
EY
3. fz2 emcos(t)\/%dt
2
L Tpdedy  with K = [0, 7] x [-1,1]

Let us recall that

b _27 (1)l ®)
/a )dt ~ Z e (5.7)

where t; are the maximizer of the function f(¢) (so f'(¢;) =0 and f”(¢;) <0) and

ix . —27 ix sgn (o 1T
/ a0t~ )\ gyt (5.5)
a =1

where ¢; are the stationary points of the function ¢(¢) (so f(t;) = 0). This formulae

hold also in higher dimensions using the obvious multidimensional gaussian integral.
The first case is a Laplace type integral and the function |sin(z)| in the range

[0, 27r] has a maximum in v = 7 and = 37“ therefore using Laplace method /approximation

decomposing the integration interval into two subintervals (for example [0, 7] and

[7,27]) we have

L —27 T iim 2w
xszn(t)tdt ~ Zprsin(3) — — ¢t 5.9
A e \/x((szn(x))//|x:g) 26 T 26 ( )
and
27
—27 3 . 3n 21 3w

—zsin( tdt 2r —asin(5) — — 5.10

[ \/ o 2 Ve2e B0
Therefore

2 / /27T 3
/0 X 2$[€ e o1

The second and the third integrals are of Fourier type with

or(t) =134t = ¢ (t) =3t —4=0=t, = (5.12)

2
V3
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and
Pa(t) = cos(t) = ¢5(t) = —sin(t) = 0 = tx, = kr with k € Z. (5.13)

Therefore the integrals can be estimated using stationary phase method:

log( ) ixd1 (to)+sgn(ey (to)) Fi

10
iz(t3—4t)l Dt ~
(& (0]
/1 9(t) |¢~< ]

0B, (2 ) oD,
12z V3

and (note that only ¢y = 7 is in the integration interval)

(5.14)

3
2 . )24 (—x
/T ezxcos(t) \/%dt ~ |¢”( )| /t €Z$¢2(t0 +sgn(¢y (to)) §i \/_6 i(—z+7 (515)

2

The fourth case is again a Laplace type integral; function f(z,y) = —ycos(x) has
gradient given by

Vf(x,y) = (ysin(z), —cos(r)) (5.16)

Vf(z,y) = (ysin(z),—cos(z)) =0=y=0Ux = k‘g (5.17)

and the Hessian is

ycos(x) sin(x)

Hf(z,y) = lsmw) 0 } = det(H f(z,y)) = —sin*(z) <0 forz = g (5.18)

Therefore we have

/ / —tcos(x)y dydl‘ ~ Q_Wg 1 é (519)
T4y tm \/_ t
6 Distributions

6.1 Derivatives of distributions

Find the general rule for the derivatives (in the sense of the distributions) of the
following functions and compute it on the indicated test function

o () for ¢(x) =3x;-1y(r) and G(z) = 267X 1o0);

o [t—2" for ¢(t)=h(t) = {tg ifte [_2’2]5;

0 otherwise

— 32 —



Let us recall that given a function f(t) we can associate (thanks to Riesz repre-
sentation theorem) the object

f(o) = f(t)o(t)dt (6.1)
where ¢(t) is a test function namely, these are functions in a functional space whose
dual is the space of distribution for example in C'° or in S, this object is a linear
functional and it is our distribution. The derivatives in the sense of distribution can
be computed as

+o0o +oo

F(0) = FBet)dt = (~1)" o) f(t)dt = (~1)"f(e'™),  (6.2)

—00 —0o0

Vo(t) € C°, S and where in the second passage we integrate by part n times.
So for the first case we have

2 2 +oo 2
@) =~ ) =~ [ e o
= — e ¢(z) T /OO 2z~ ¢(z)dx; (6:3)
=0 — -

so we have )
(e_IQ)'(3X[,1,1]) = —3/ 2xe " dr =0 (6.4)

1

and

2 +oo +oo a )
(6*95 )’(26*1)([0 +oo)) = —2/ 2xe —a? 2y = 4/ _( —x tz) _
) 0 ; a
fe

B[ =aE <%>>
- (WMETf C(%) - 2) - \/Ee4Rfrc(%)

For the second case, by definition we have

2
e4E7"

t=1

6.5)

(= 21y"6) =t =2 = [ lt= 24 =
= [ e-new+ [ o200 =
— (2-1¢'(t) Q_Oﬁ / oo #(t)dt + (¢ — 2 (1) :m - ;m o (t)dt
\ - / - (6.6)
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where we integrate by parts using in the first integral f =2 —t, ¢’ = ¢” and in the
second integral f =t —2, ¢ = ¢”. So we have

+2
— 16 (6.7)

-2

(1t = 2]) (k) :/_Z 32t — 13

6.2 The Dirac delta

Compute the following integrals:

o [ =["2(36(x — 1) +20(x))e "+ d;

IT = fj;o 26(%52) a3 du;

IIT = [* (=220 (= L+ 1) +6(x — 8)]dt;

IV = f?oo z6(23 + 1)dz;

Let us start with some recalling; the fundamental property of the Dirac delta
distribution is

fzo)  if xo € [—a,al;
0 if xo & [—a,al;

this is due to the very definition of distribution as linear functional from a space to

’ f(2)o(z — zp)dx = { (6.8)

its dual. Moreover from the definition of distributional derivative follows that
| 5@ - ade = (<17 [ 0@ - au)de =

_ {(—1)"]"(”)(1’0) if o € [—a,al;
0 if o ¢ [—a,al.

Other important and useful properties are (expressed with abuse of language since

(6.9)

these properties are true only when we think the delta as a linear functional):

e i(ax) = )

laf 7

where z; are the zeroes of the function f(z). Now we can start. In case I we have

oo 3.2
24 3(z _q2 _ 02 _
/_ (36(z —1)4+25(x))e 3@y = 371 H30172) 4 9, =074300-2) T (6.10)

[e.e]

Case I can be solved using rescaling property of delta distribution, indeed

+oo r—3 +oo
/ 25( 5 )x3dac = 2/ 20(x — 3)a’dx = 43* = 108. (6.11)

o0

o0
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Case 111 is a little more complex; first of all note that since x = 8 ¢ [—4, 4] the second
piece does not play any role. Now using the definition of distributional derivatives we

get /_i(t_ 2)25/(_ % N %)dt _ _/_‘: {@_ 2)21/5(_ % + %)dt, (6.12)

and using composition rule for delta distribution we can rewrite it as

t 1 5(t—2) 3
S -4+ =22 =30(t— = 6.13
(~5va) =T () 019
since /
t 1 3 t 1 1
4= t=— —_—t=| =—=. 14
gty=V=t=5 ( 3+2> 3 (6.14)
In the end
4 / t 1 4 / 3 /
—/ (t—2)?| 6 —=+= dt:—3/ (t—2)?| §(t—= |dt = =3 |(t—2)* =3.
—4 3 2 —4 2 t:%
(6.15)
Case IV is similar, indeed
/
Prl=0=1=-1, <x3+1) = 3% (6.16)
therefore o o
1 1
/ :L‘5(ZL‘3—|—1)d$:/ x%:—g. (6.17)

6.3 ODEs and weak solutions
Solve the following Cauchy problems:

Loay"(z) =2/ (2) + (v + Dy(z) = 0(z —7), y(5) =y(F)=0

2. a2y (z) +ylx) =0z —2)+0O(x—-3), y()=

—_

3. y"'(x) + _y”aEJJ) — 2% —+ 2% = 2(5(1’ — 2), y(l) = 17y,(1) = y”(l) = 0

In general the solution of a ODE is given as y(z) = yo(z) + y,(x), where yo(x) is
the solution of the homogeneous equation while y,(x) is a particular solution of our
problem. Let us start with case 1. Let us massage the homogeneous equation

2 x2 42 2 x2 42
1 / 0 " = !
Yo~ Yot g Yo = = (2g)" = —(z9) + —

rg=0=

yo(z)=e/ 9% g(x)=xg(x)

2 2 +2 2 242
=g +g +ag’ ——(g+zg)+— g=0¢x9"+(—;+ ——)9=0=

=9 +9=0;
(6.18)
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this is a simple harmonic oscillator and the solutions are sine and cosine. Therefore
g(z) = acos(x) + bsin(x) and

yo(z) = azxcos(x) + basin(x). (6.19)

When z < 7 the equation is homogeneous and the solution is yo(x), while for z > 7
something happens: since the second derivative has a Dirac delta behavior, we expect
that the first derivative has a Heaviside behavior and the function to be continuous
in the point 7 (obviously this is true in the sense of distribution and therefore we are
looking a weak or distributional solution). So we can write a modified solution after
x = 7 changing the coefficients but with the same functional form since for x > 7
the equation is still homogeneous. Let us write the general solution before and after
T =T as

Yocr(T) = arzcos(x) + bixsin(z) if v <, (6.20)

Yoor(2) = agzcos(z) + byxsin(z)  if x >7 '

and we need to impose continuity of the function and step singularity of @ = w—lo = %

of the first derivative (where a(z) is the coefficient of the highest derivative order
term of the equation). We have

yz<7r(7r_) = y;t>7r(7r+) = a; = Gy (621)

and

1

1 1
Yoor (M) =t (@) == = —a2 —bym+ a1+ bimr = = = by —by = —.  (6.22)
m m m

The general solution is therefore

Yoer (1) = arxcos(x) + byasin(x) if x<m,
A . (6.23)
Yoo (T) = a1zcos(z) + (bl - p>xsm(x) if x>

and imposing the boundary conditions we get

T s 3 3 1\ 3m
y(g) —515—0, y(;) ——51?— (bl_ﬁ)7_0 (6.24)

but this system has no solution, therefore our Cauchy problem does not admit any
solution. Let us consider case 2, this is an Euler equation and the homogeneous
solution can be find in the form yo(x) = c;z*:

rar®* t+ ¥ =0=a+1=0 (6.25)

and so @ = —1 and yy(v) = 2. The Heaviside term enter in the game only when
x > 3 and here the function must be continuous, while the Dirac term makes the
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function discontinuous in = = 2. Let us consider first the Dirac term, the solution is
modified but the equation is still homogeneous; we write

eeo(x) =% if x <2,
Y <2( ) p / : (6.26)
Yoso(x) =2 if 2>2
and we impose the discontinuity at x = 2
_ 1 Co C1 1
e>2(27) — Y22 == S -5 == =c + 1. 6.27
Yrs2(2") = Yoca(27) 2:>2 5 2=>C2 ¢+ (6.27)
Now the Heaviside term; for x > 3 the equation becomes
zy' (z) + y(x) =1, (6.28)

the homogeneous solution is the same as before but now we have also a particular
solution. The simpler choice is y,(x) = 1 and the complete solution is y,~3(x) = < +1
(while y,<3(z) = yz>2(x)) where c3 has to be find imposing continuity of the function

inzr =3,

_ a+1 ¢
Yo<3(37) = Ya3(37) = 1T = §3 Fl=c3=c —2. (6.29)
The general solution is therefore
o if v <2,
yx) =4 < if 2<x<3,; (6.30)

a=$ 41 ifa>3

and imposing the initial condition we find

y()=a =1 (6.31)
SO
% if v<2,
y(z) = q 2 if 2<z<3;; (6.32)

~141 ifz>3

Case 3 is again an Euler equation, indeed, in the homogeneous case for z # 2, we
have (searching a solution of the form y(z) = z%)

vy +aty’ =2y +2=0=ala-1)(e-2)+ala—1)—20+2=0
= (a—Dala—2)+a—2]=0
= (a—1D(a—2)a+1]=0=a01 =1,as = 2,05 = —1.
(6.33)
So the solution is

y(x) = ayx + biw? + “, (6.34)
T
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Since there is a Dirac term, we expect a step discontinuity in the second derivative
and continuity in the function and it first derivative in z = 2; let us write the solution
for x > 2, here the equation is still homogeneous but we need to change the coefficents.
In the end we have

{ng(x) =mr+ba*+<  ifr<2, (6.35)

y$>2(a:):a2x—|—b2x2+% if xt>2 7
and imposing continuity and discontinuity we get
ym<2<2_) = yac>2(2+) = 2a; + 4b; + %1 = 2a9 + 4by + %2,

Yo (27) = ¥300(27) = a1 +4by — § = ag + 4by — %, ; (6.36)
Urso(27) = 4l o(27) = 205 + 2% — 20, — 2% =2

instead of solve this linear system in general, we solve it using the boundary conditions

Ypco(l) =1=a; + by +c1 =1,
Yoer(1) = 0= ay +2by — ¢, = 0, (6.37)
yg<2(1) =0= +2b1 =+ 261 = O,

whose solution is given by a; = 1,b; = —%, c = % Therefore we have
2— 34§ =2a+4b + 2,
1—%—%:@—1-462—%, ; (638)
2 1 co
3713 200—2% =2
and so
11 11
a9 = s A9 = E, Cy = 9. (639)

In the end the solution is

(6.40)

x2 1 -
Yreco(T) = 04+ —% + o if x <2,
y($):{ 32 ’ .

7 Finite dimensional linear spaces and euclidean
spaces

7.1 Matrices and invariant quantities

Given the following linear application compute the representative matrices and the
invariant quantities:

e g(z,y) = (5x — 10y, z — 2y) : R> —» R
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o hz,y,2) = (—10y, 2 —y,x +y+2) : RS — R3;

To understand from which matrix function f(z,y) is represented we chose a
basis and than we can compute the trace, the determinant and the characteristic
polynomial. For the firs case, let us choose the standard R? basis, we have

9(1,0) = (5,1),

(7.1)
Therefore we have the following matrix representation
5 —10
Agzy) = [1 _2} : (7.2)

the invariants are

cha,,, = Det(Agay) — ML) = (5= AN)(=2—A) +10 = A\* — 3}
Tr(Agay) = 3; (7.3)

Det(Ag(z7y)) = —10 + 10 = 0.
In the second case we choose the standard basis of R3, we have

h(1,0,0) = (0,1,1),
h(0,1,0) = (=10, —1,1), (7.4)
1(0,0,1) = (0,0,1).

Therefore we have the following matrix representation

0-100
Ap@y = |1 -1 0 (7.5)
111

andnthe invariants are
cha,,,., = Det(Anwy) — ML) = (L= N)[(=A) (=1 — ) +10] = 23— 9\ + 10;
TT(Ah(:c,w)) = 0;

Det(Ap(z,y,»)) = 10;

1

12 = 5[(TT(Ah(377y,Z))>2 - TT(A%L(x,y,z))] =09.

(7.6)

7.2 Invariant subspaces

Determine the invariant subspaces of the following matrix

o h(z1,29) = (21 + 22,21 — 22) : C? — C?
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We can think C? as R*; therefore we can write
M1, y1, T2, y2) = (21 + T2, Y1 + Yo, 71 — T2, 31 — Yo) 1 R* = RY (7.7)

choosing the standard basis of R* we have

h(1,0,0,0) = (1,0, 1,0),
h(0,1,0,0 0,1,01
(0,1,0,0) = (0.1,0,1) -
h(0,0,1,0) = (1, ,0),
h(0,0,0,1) = (0, 1,0 1),
therefore the representing matrix is
101 0
01 0 1
A = .
h(z1,y1,22,y2) 10—=1 0 (7 9)
01 0 —1

For the invariant subspaces, note that every vector of the form (z1,0, 22, 0) is mapped
into (1 + 2,0, x; — x9,0) and every vector of the form (0,y;,0,y2) is mapped into
(0,91 + 92,0,y1 — y2). The first is the R? subspace of C? while the second is iR? (with
abuse of language) subspace of C?

7.3 Nullity + Rank

Given the following linear application say if they are injective, surjective or bijective
o hz,y,2) = (2w,2 —2y,2y — 2) : R® - R?
e g(r,y,2) = (2x+ 2z, — 2y) : R® —» R?

If we have a liner map f from V to W (both on the fild K), it is injective if
dimg(Ker(f)) =0 and it is surjective if dimg(Image(f)) = dimg(W); morover the
following is a fundamental result

dimg (Image(f)) + dimg(Ker(f)) =n = Rank(A) + Null(A) (7.10)

where A is the representing matrix of f and n = dimg (V). If the linear map is both
injective and surjective than it is bijective. We have the following implications:

o if dimg (W) = dimg (V) than f is injective if and only if it is surjective (this is
obvious: if the image of the application has the same dimension of the starting
and arriving vector spaces, the kernel must be trivial);

o if dimg(V) > dimg (W) than f is not injective (this is obvious again: if the
dimension of the starting vector space is grater than the one of the arriving
vector space, some subspace of the starting vector space must be contained in
the kernel of the application);
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o if dimyg(W) > dimg (V) than f is not surjective.

In the first case we have dimg (W) = dimg (V) = 3 so we only need to show that f
is surjective. Let us construct the representing matrix choosing the standard basis of
R3:

h(1,0,0) = (2,1,0), h(0,1,0) = (0,—2,2), h(0,0,1) = (0,0,—1), (7.11)

therefore the representing matrix is

2.0 0
Apeysy = [1 =2 0| . (7.12)
02 —1

Its determinant is not vanishing and therefore its rank is maximal: the application is
bijective. In the second application we have dimy (V') > dimg (W) and so it is not
injective but is can be surjective: let us see. The representing matrix, choosing the
standard basis of R3 is

20 1} : (7.13)

Ag(rvyvz) = |:1 -20

the two rows are independent and so the rank is Rank = 2 = dimg(W): the function
is surjective.

7.4 Euclidean spaces

Given the following spaces endowed by the prescribed scalar product say if they are
Euclidean spaces and orthonormalize the reported vectors if the space is Euclidean.

e the space of matrix Mat(C,2) with the scalar product (X,Y) = Tr(X'Y),
Al 2 and B — 0 2
1-1

_/Z: -

I

e the space of matrix Mat(R,2) with the scalar product (X,Y) = Tr(XY?X7T),

[1 2 0 2
A= i _21 and B = [1 _11,

e the space of polynomial of degree 2 in [0, 1] with the scalar product (p(z), ¢(z) =
folp(z)q(z)dz; p(z) =1+ 3i2% q(z) =3+ 22 — 22

e the space of polynomial of degree 2 in [0, 1] with the scalar product (p(z), ¢(z)) =
Zi:o DPnqn With p, the coefficients of the n degree monomial of p(z) and similar
for qn, p(z) = 1+ 3i2?%, q(z) = 3+ 22 — 22

The first thing to do is to show that they are scalar products, namely that for every
x,y € V we have
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L (z,y) = (y,2);

(x,\y) = AN(z,y) for X\ e C;

N

3. (v,y+2) = (z,y) + (z,2);
4. (z,z) >0 and (z,z)=0 iff z=0.
The first one is a true scalar product due to the properties of the trace indeed:
L. Tr(X'Y)=Tr(Y1X);
2. Tr(XTA\Y) = \Tr(XTY);
3. Tr(XT(Y + 2)) =Tr(X'Y + X12) = Tr(XY) + Tr(X'Z);
4. Tr(XTX) =370 Ty > 0;

so Mat(C,2) with Tr(XTY) as a product is an euclidean space. The second one
is not a scalar product since it does not respect, for example, point 2; indeed
(X,\Y) = M(X,Y). Therefore Mat(R,2) with Tr(XY?2XT) is not an euclidean
space. The third case is a scalar product indeed

L. fo a(2)p(2)dz = fo q(z)dz;

2. fo p(2)\q(2)dz = )‘fo )q(z)dz;

3. fo p(2)(q(2) +1(2))dz = fo dz+f0 l(z)dz;
4. fo p(2)p(2)dz > 0

the last case is identical. The space of polynomial with these two product is, in both
cases, an euclidean space.
Now we have to orthonomalize the reported vectors; this is done using Gram-Schmidt

procedure
1 , () — S (k) 20))e(R)
W= " =" ,“(e e 2<j<n.  (7.14)
1] @) = 32 (e®), a@))e®)||
In the fist case we have, since ||A|| = /Tr(ATA),
—i —i] [i 2 141 —2i+2i
Ata=|"THE ] = All = V10; 7.15
[2 ol li2) Tl2i2i a4a | T o (119)
therefore A
e = — (7.16)

V10
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while

where
f 1 —1 —i| [0 27 1 —i 241
(Jme)e= ([ 2l B 2] e vmrr([ai])
_2+32
V10
(7.18)
and
p_2H8i, [02] 2+3if02] _[02]_
V1o 1 -1 V10 |1 -1 |1 -1] (719)
1 0 6+i(2v/10 —4)] '
V10 [V10—2—-3i 2—V10+3i |’
therefore
2+3z
1B — BII—
V10 — 2+ 3i 0 6+i(2v/10 —4)]\
\/_ —4)2—V10+3i| [V1I0—2—3i 2—+/10+3i B
_[—24V10+ 138
N 10 '
(7.20)
In the end
. 1 .
o L2l e VIO 0 6 +i(2V10 —4) (7.21)
V10 i —2] [—oaviorizs V10 —2—3i 2—+/10+ 3i '
10

In the third case we have

llp(2)|| = \//0 (1 —3i22)(1 + 3iz?)dz = \//o (14 9z%)dz = \/(z + 225) ) = %4,
(7.22)
S p(zlz (7.23)
The second basis vector is
q(z) — fol (p(zll q(z)dz) q(2)
e = ° (7.24)
lo(e) — Jy ((ZLate)az Yoo
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where

/01 (Zj/(_%q(z)>q(z) 15—4(](2) /01(1—3i22)(3+22—22)dz: 154 (%—?—3@) (2)

(7.25)
and
5 (11 39
o=y 5 (5 - i) =
5 (11 39 5 (11 39 5 (11 39
—3(1— /2 (=) ) e /2 () ) e (1 =) )
3(1 14(3 102))+( 14(3 102))2 ( 14(3 10>)Z
(7.26)
therefore
5 (11 39
YN = . 7.27
lote) ) 5 (5 - 50t (7.27)

In the end we have

Uf\/ +3,/
R 8) B8 8

6(

(7.28)
The last case is simpler:
Ip(2)]] = VI+9=+10 (7.29)
SO
o = P2, (7.30)
10
The second basis vector is
R Pl .
€ ) — 92) N2 Y ( (7.31)
lg(2) = Ji5 2on=0 P(2)a(2)]]
where
2 )
q(2) \~—— ( 3+32) ( 3+31) ( 3+32>
z)— 2)q(z) =31— +2(1— —(1- 7.32
a(2) =5 ;p )q(2) 7 7 7o )7 (732)
and
| (Z)_q(z) 22:—2) ()] = 126 — 27\/1_()+56 - 12\/E+14 —3v10 196 — 42v/10
=m0 &P 5 5 5 5
(7.33)
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in the end

1
1 — 2
e = —— |14 3iz"|,

. . . (7.34)
@ _ 5 3+ 31 3+ 31 3+30\ 5
e@= 2 3(1- ) o1 ) (1 )2
196 — 42+/10 v 10 v 10 v 10
8 Eigenvalue problems and matrix functions
8.1 Classification of matrices
Classify the following matrices:
[ V3
%03
1 0 —i 0 |;
)
-3 0 %
[0 1+dil1+14
2. [1—i 0 1+il;
1-i1—i 0
[0 0 1]
3. 10 0 1f;
|1 -10]
[0 1 —1]
4. 1 01
11 0|
The first matrix satisfies the relation
T
73
“ g 1 ¥ o 1 100
0 — 0 0 -2 0| =1010]; (8.1)
—Lo & |-1o ¥ 001
therefore it is unitary. The second one is hermitian since
0 14+il144]" 0 14+i1+i
1—¢ 0 1+ =|1—4 0 1+4]. (8.2)
1—41—47 0 1—41—7 0

The third matrix is antisymmetric while the last one is symmetric.
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8.2 Matrices determination

Determine the matrix under the following conditions:

e the generic 3 x 3 antisymmetric matrix A satisfying the conditions A? = Z and
Tr(A?) = 0;

e the complex matrices B with eigenvectors v} = (1,4,0), vo = (0,0,1), U5 =
(7,1,0) such that det(B) = 1,Tr(B) = 0, Aty = Uy, Im(A\) > Im(Xs);

e determine the matrix C' such that C' € SO(2) and C € SU(2);

e determine the 2 x 2 matrix D such that which leaves unchanged the matrix
01
J = .

For the first case, the generic 3 x 3 antisymmetric matrix is given by

0 ab
A= |-a 0 ¢/, (8.3)
—b —c0
its square is
—a?—-b —bc ac 100
A% = —bc —a*—c —ab | =1010], (8.4)
ac —ab  —b? -2 001
SO
~bc=0, ac=0, —ab=0, —a®*—b*=1, —a*—c*=1, —b*—c*=1; (85)
and

Tr(A?) = —2a* — 26> — 2¢* = 0. (8.6)

This set of equations has no solutions. For the second case we know the matrix is
diagonalizable, therefore the condition can be rewritten as

)\2 = 1, )\1)\2>\3 = 1, )\1 + )\2 + )\3 =0. (87)

The system has solutions

1 14 14 1
2\/571’ +iv/3 ’ +Z\/§’17 iv/3 (8.8)
2 2 2 2
but the requirement Im(A;) > I'm(As3) fix the solution
—1+4+w/3 . —1—1v3
(F2 25, (59)

— 46 —



which is the diagonal form of the matrix B. To obtain the general form in the
canonical base of R?, we need to change basis; using the orthonormalized eigenvectors
we build up the base change matrix

104
BCM = |i01 (8.10)
010
whose inverse is
L _ iy
2 "2
(BCM)™ =10 0 1f; (8.11)
_i 19
2 2
using
_1 ¥
2 2
B = (BOM)Biag(BCM) ™' = | -3 1 (8.12)
0 01
The third case is simply: we know that
SO(2) := {M € GL(2,R)|det(M) = 1, M"M = T}, (8.13)
SU(2) :={M € GL(2,C)|det(M) = 1,M"M =T} '
Therefore we need to compute the general matrix in SO(2); this is the matrix
ab
pu— -14
c= [ty (8.14)
need to satisfy the conditions
a4+ =1, ac=—bd, +d*=1, ad—bc=1 (8.15)
whose solution is
a==2d, b=xV1—-a? d==xV1-d. (8.16)

In the last case we need to require
ac 0 1| fab 01
= 1
el o) [a] =) 17

—bc+ad=1, bc—ad=—-1 (8.18)

therefore we have

SO
—bc+ad=1. (8.19)
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8.3 Matrix functions

Given the following matrices compute the corresponding function:

e for a generic 3 x 3 matrix A with the following spectral decomposition A =
S _ MNP with AF = e compute A%,

e given P = compute the function P* Vn € N;

= O N
S = O
= O N

e given the odd function f(x) such that f(—1F+/3) = 2, compute the eigenvalues
of f(A) with A= (I + ), 0;), where o; are the Pauli matrices;

e given the matrix A = f(aZ + bii - &), where a, b are real positive parameters and
n= \%(1, 0,1). Determine its general form in the Pauli basis and specialize for
a=0,b=1and f(\) =1 where \; are the eigenvalues of aZ + bri - &

In the first case we have

( ) Z Ak P\ pU) i D) Z AEG N 8 N PO

k,7,i=1 k,ji=1

(8.20)

Mw &M“

PO — _p) | p® _ p

=1

where we used the idempodence property of the projectors. For the second case we
note that

P? =P, (8.21)
therefore
P if n=2k;
P = if n =2k, (8.22)
P ifn=2k+1;

where k£ € N. In the third case we use Cayley-Hamilton theorem: essentially every
matrix is a root of its characteristic polynomial. Therefore for a matrix n x n, we
can always reduce its power grater than n — 1 to a sum of the first n — 1 powers; so
every matrix function can be rewritten as

= ni: FrnA™, (8.23)

and the coefficients can be find requiring that on the diagonal form of the matrix we
have

n—1
=Y A (8.24)
m=0
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where \; are the eigenvalues. In our case we have

2 1—i
A= 8.25
LH’ 0 ] (8.25)

whose eigenvalues are \_ = 1 — /3 and Ay = 1+ /3. Now
FA) = foI + fLA (8.26)
and
FA=V3)=—=2=fZ+(1—=V3), fA+V3)=—-2=fT+ fi(1+V3) (8.27)
whose solution is fo = —2 and f; = 0. Therefore
f(A) =21 (8.28)

Therefore the only eigenvalue is —2. In the last case we have

b a+L L
a+ —=(o1+03) =] V2 ﬁb] (8.29)
V2 TV
whose eigenvalues are A_ = a — b and Ay = a + b; now
A—f(a,I#—i(a +U))—fI+f{aI~l—i(a +0)] (8.30)
/5 11+ 03 0 1 /5 11+ 03)|, :

and
fo=fA) = fo+ fila=b), fr:=f(As)=fo+ fila+D) (8.31)
whose solution (for a # 0,b # 0)is

:a(f——f+)+b(f—+f+) Jv— /-

fo 2b T (8.32)
In the end
A = (fotafi)Z+fibii-d = A b(fz;)r Livdd - af}IJr {ﬁ ; f} 7P
(8.33)
fora=0,b=1,f_ = f. =1 we get
A=T. (8.34)
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8.4

Matrix ODEs

Solve the following matrix first order ODEs:

1.

2.

de — 3w —dy, ¥ = 4o —Ty, x(0)=y(0)=1;

% :3d—¥+%%—ty, y(0) = 1. Find the solution up to third order in t¢.

The general solution of a matrix ODE of the form

de(t)
— = Ala(t) b (8.35)
x(t) = b+ ex(0) — b]. (8.36)
In the first case
3 —4 0
A==l s

So we need to compute the exponential of a matrix; the eigenvalues of A,

A =-5 X=L1 (8.38)

At this point we can compute the diagonal exponentiated matrix and return to the

non-diagonal using the base changing matrix; however, using Caley-Hamilton theorem

18 easier:

the solution is

et = fo —b5tfi, €= fo+tfi; (8.39)
€—5t 5€t et €—5t
_ °C _c_° 8.40

Now, the solution of the second case is

SO

o) (SR e

ot —esn ([ [ = [0 2 1] -

(8.42)
e /34 2¢'/3
o le/3+2e7/3]
In the second case we need to reduce to a system, let us write % = tx than:
dy* _,dv (8.43)
—_— = — €T. .
dt? dt ’
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SO

dx dx
t— 3t —t :>——3 — —
dt+$ T+ Y 7 T —, 7

HEEIA!

with initial condition x(0) = 1. Note that

/A ds—/ﬁo}d—[g;_ot] (8.46)

does not commute with A. The solution is given by the T product

—T{ewp( /0 tA(s)ds)} m (8.47)

Expanding up to second order we get

{z+/ Als ds+/ds/ A(s)A(q)dq + .. Hﬂ (8.48)
[ awas= [ 1] :[?5—01,

= tx. (8.44)

In matrix form

where

t s t _s2 .
/ds/A(s) dq—/ds/ [ a+9 3}d _/d 7 95 35]:
0 0 3 —s
_|Erae —%f]
¢ 3
(8.49)

so the solution, up to third order in t is,

— 342782 418t+6 —3t2—2t 1 —t34+18t24-12t+6
_ 6 2 _ 6
w(t) - 213 +¢2 iz | T L} - 4t34-3t2 46 + (8'50)
2 3 6

9 Abstract linear spaces

9.1 Lebesgue spaces
Determine for which ¢ the following functions belongs to LI(R™, £™):

o u() = (1+a)77;

o u(x) = xp,©)|7] *
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To belongs to LY(R", L") with ¢ € [1, +00] we need that

/|f(x)\qd”x < +oo for g€ [l,+00) (9.1)

and
sup{C' | |f(z)] < C,q.0.} < +o0 for g = +o0[l,+00). (9.2)

For the first case we have

1 1 w0
d"x = ———d"v = ———p" " ldp (9.3)
R™ re (1 4+ |x|7)? o (1+pr)

1+ |z
this function explodes at infinity, where the function behaves as

1
uw@) = —, (9.4)
IO P
so we need to impose that at infinity the integrals behave better that a logarithm,
namely
ng
n—1—-—<-1=p<q. (9.5)
p
For the second case we have
q 1 1
/ = d"x = Q/ — " Ldp; (9.6)
o Jal? o (o)

in this case we have problems at zero, so again function need to behaves better than

logarithm at zero, so

n—l—@>—1:p>q. (9.7)
p

10 Eigenvalue problems in infinite dimensional spaces

10.1 Resolvent operator for finite-dimensional matrices

Using the resolvent operator find:

-1 10
e A2 with A= | 0 —11| and using the determination with the branch cut on
0 0 4

the imaginary negative axis
Recall that the resolvant operator is defined as
R(z;T)=(:Z-T)" (10.1)

where T is an operator; the set of complex numbers z such that the operator is
invertible is the complementary set of the spectrum of the operator. Moreover from
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the resolvant operator we can compute, using residues, the projection operators
entering in the spectral decomposition. In general we can compute the projectors
using

Lz (T = AT)

Py, = non degeneracy case;

Hnyék(/\k - /\n)
[T 20 (T =N, T) (10.2)

= degeneracy case.
H H,\kn;s,\kj (Ar; — Ak,

The resolvant operator for the matrix A is given by (using the definition)

Py

-1

I+z -1 0 ST G GIG)
S — _ 1 1
0 0 —4—=z2 0 0 L
The eigenvalues of A are A\;;, = A\, = —1 and A3 = 4. The projection operators

associated to A\; and A3 are computed calculating the residues of the function in the
entrees of the resolvent operator for z = \; and z = Ay, we get

10 -2 00
Py, =101 -1, P,=1001]. (10.4)
00 0 00 1

To find the other projector operator associated to the degenerate eigenvalues —1
(namely A;,) we use the fact that

01—3
gyux+gfj:ah:00§. (10.5)
00 O
Using the spectral decomposition we know that
S(A) = f(A,) Pay, + /(A1) Pay, + [(A3) Py (10.6)
so using that for our determination (—1)2 = —i we get

i
A2 = P\ + P\ +2P, =

5 (10.7)

10.2 Spectrum of an operator

Given the following operators find

e the punctual spectrum and the eigenfunctions of T' = —i% +¢e* with D(T) :=

{f € L2[0.1], /" € L*[0,1] | f(0) = f(1)};
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e the punctual spectrum and the eigenfunctions of 7' = - + m with D(T) :=
{f € L?[e,e?], f' € L?[e,e?] | f(e) = f(e*)};

e the punctual spectrum of the Fourier transform operator on L?, F, knowing
that 72 = R where R is a reflection (involutionary) operator.

For first case we need to solve the equation

d
4T ) f =\ 10.8
( e +e )f f (10.8)
whose solution is given by

imposing the boundary condition we get f(1) = f(0)

f1) =ce™ 1N = £(0) = c = 7N = 1 (10.10)
so we require that
Me=e—1+2kn keZ (10.11)
In the and
etgenvalues = N\, = e — 1+ 2kn  k € Z;
e (10.12)
eigen functions = fi(x) = f(0)e " 17,
For the second case we need to solve the equation
d 1
— =\ 10.13
<dx i xln(:v))f / ( )
whose solution is given by
F(@) = e KN _ e _ 0 gy
In(z)’
imposing the boundary condition we get
6)\(6276) eA(6276)
fle)=e—F—=fle)=c=>—5—=1, (10.15)
so we require that
In(2) + 2kmi
= >2+ iy (10.16)
e?—e
In the and 1n(9) 4 2o
ergenvalues = A\, = n( )2+ ALy € Z;
e2—e
Ar(o—e) (10.17)
eigen functions = fi,(z) = f(0) @)
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For the last case we only need to know that, being R an involution

R*=7T=F'=1T,

(10.18)

since for Caley-Hamilton theorem a linear operator satisfy it characteristic polynomial,

this means that
M=1=)\=1i" k=01,23.

11 Fourier transformation and series

11.1 Fourier series

(10.19)

Compute the Fuorier series of the following functions and use the result to sum the

indicated series:
o fla)=¢%, —m<a<m YT
2

o g(z)=x(x—2m), 0<x<2m, ZTO -

n2

To compute the Fourier series of a generic function h(x) we need to compute

2
h(zx)cos (%nx) dx;

2 2
b, = T /g h(x)sm(%nx) dx;

and the Fourier series will be given by

h(z) = % + E [an Cos (%nx) + by, sin <%nw>} ;
n=1

or equivalently

h(z) = Z cnem%,
with )
]_ 2 —i2tnz
Cp = T/_T h(x)e T da.
2
Let us start with the first case; we have to compute
1 i -z . 1 7 . T 1 T -
Cp = — e'5 e~ INT I — ' : em[i—zn] _ A : [67—zn7r _
2 ) . 2m[5 — in] . 2m[5 —in]
_ 2isin((2n—1)3)  (=1)"
o 2mili—n] w[i-n]
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so we have
- (_1)71 inx
fla)y= Y ——F e (11.6)
n=—o00 T 2
We note that for x = 0 that the following relation holds (since the function in
continuous in x = 0 the series converges in that point)

o0

1:}2 ( (11.7)
In the second case we have to compute
1 s
a, = —/ [z(z — 27)]cos (m:) dx;
T
1 T (11.8)
b, = —/ [z(z — 27)]sin (nx> dx;
™ —T
integrating by parts we get
272 4 47
ap = T, Ap>0 = (-1)”-2 bn = (—1)”;, (119)

SO

:_+Z[ ' cos (n )+(—1)4—7Tsm(nx)]. (11.10)

n

we note that in x = 0 (the series converge in that point because the function is
continuous) we have

(11.11)

ﬂ' o0
=§+Z

n=1

i > =
n=1
11.2 Computing Fourier transformations

Compute the following Fourier transformation of the following functions:
o flz)=el;

. 0@) = ——

e+ (44e)”

integral from 0 to +o0);

with ¢ € R" (do the antitransform express it as an

o h(Z) = e with 7 € R”.

Let us use the definition of the Fourier transform with the factor in its inverse.
For the first case we have

A +w . 0 . +m .
f(p) = / e lTle=Pr g = / e“e "Pdx +/ e e Pdr =
—00 —o00 0

4 . 11.12
6m71px|(100 e—a:—zpa:|80 B 1 1 2 ( )

1—ip i d—ip T1tip 142
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For the second case we have

S G
(b(F):/(QCqu)"IeﬂQi(MTC)Q (11.13)
we note that
/0 dBe AT HR?) :_me_ﬁ(ﬂ2+k2) 0 !6121 =
so, fixing k = %<, we get
1 s L[ T (T sk
_ W/d(j/o 5 PR+ _ (27r)n/0 dﬂil_!/oo dgzeim—Aa ),

(11.14)
using the gaussian integral

+oo 9 o2
dqae b Featd — ¢ [—emtd
oo b

where, for our case, a =1, b= 3, ¢c = ir; e d = —Sk?, we get

o0 = G / {\Fe;sﬁ(ﬂﬁfﬂ _ (;:)n /Ooodﬁewﬂ#hﬁ (11.15)

In the last case we have the product of seven Fourier integrals of the one-dimensional

~ +00 ] +oo .
= ([ evtemman)( [ eterma)e

now, starting from

gaussian

“+oo
/ e tide; = /7 (11.17)

o0

using the change of variables t; = \/ax; + f we get

+0o0 2
/ 6—az?e—pizidxi — \/E€Z;Ll. (1118)

At this point we note that if we substitute p; — ip;, equation 11.18 is extended to
holomophic functions that, since they coincide on the real axis, must coincide in all
the complex plane. Therefore

+o0 7
/ e—a;t?e—zpimidl‘i — \/ﬁe_ié; (1119)

h(p) = (f) e~ i (11.20)

in the end
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11.3 Fourier transformation and ODEs

Find a particular solution of following ODEs using Fourier transform:
o i+ i+ wiz= Aet¥;
o i —m?ilx=J;
e 3+ +x=t

We know that the Fourier transform of @(t) is —ikZ(k) where Z(k) is the Fourier
transform of z(t) (we adopt this convention). Therefore we have in Fourier transform
we have

+oo
(—K* +ivk + wi)2(k) = A/ e Mokt dt = 2r AS(Q — k);

+oo
(—k* —m?)i(k) = J/ e ®dt = 21 Jo(—k); (11.21)
-
(3ik® — ik + 1)3(k) = / te”*tdt = 2w’ (k)

So the solutions in Fourier space are

2w AN (2 — K
() = @B
(—k2 +ivk + wf)
2 Jo(—k)
. 27’ (k)
M) = g =ik
while the solutions in real space are
1 +o0 27 AS() — ] A iQt
z(t) = —/ T 5(, k) e*tdk = c ;
21 J_oo (K% +ivk + W)) — 02 4+ iy + Wi
1 [T 2rJé(—k) J
L[t 2rd'(k)
t) = — ———e"dk=t—1
z(?) 27r/_00 3k — k410

12 Integral equations

12.1 ODEs and Volterra integral equations

Given the following ODEs rewrite them as integral equations:

L oy"(z) +xy(z) +y =0, y(0)=1,9(0)=0;
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2. y"(x)+y=0, y(0)=0, y(0) =1;
3. y"(x) +y = cos(z), y(0)=y'(0)=0;

The general procedure is to put ¢(z) = y™ where n is the maximal order
derivative appearing in the ODE. Then we star to integrate using the fundamental
theorem of calculus and the identity

/gc:d:v.../w:dxf(x)ﬁ/m:(:p—z)”_lf(z)dz (12.1)

n—times

and the boundary conditions. Using this procedure we can transform an ODE in a
Volterra integral equation of the II kind.
In all cases we put ¢(z) = y”(x). In the first case we have

w@afwmﬂywzl%@w (12.2)

SO
y() = / it / dto(t) + y(0) = / (x — Do)t + 1. (12.3)
0 0 0
Inserting in the original ODE we get

<;5(x)+x/orqb(t)dt+/0x(x—t)gzﬁ(t)dt—l—1:0; (12.4)

this is a Volterra integral equation of the I kind with K (z,t) = 2z—t, A = —1, f(z) =
—1.
In the second case we have

y'(x) = /Ow P(t)dt +y'(0) = /0:0 o(t)dt + 1, (12.5)

= ' d ' d ’ d = "o — d : :
y(x) /0 t/o to(t) +/0 t+y(0) /O (x —t)p(t)dt + x (12.6)
Inserting in the original ODE we get
b(z) + /z(;p ~ Do)t + x = 0; (12.7)
0

this is a Volterra integral equation of the II kind with K (z,t) =2 —t, A = —1, f(z) =
—.
In the last case we have

wwa[MWHymzé%@w (12.8)
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y(z) = /0 "t /0 " dto(t) + y(0) = /0 "o — Do)t (12.9)

Inserting in the original ODE we get
o(x) + / (z —t)p(t)dt + cos(x) = 0; (12.10)
0

this is a Volterra integral equation of the II kind with K (z,t) = —z+t, A =1, f(z) =
cos(x).

12.2 Volterra integral equations of II kind

Solve the following Volterra integral equations of the II kind using the iterated kernel
method:

L ¢(z) =1+ [ e"mop(t)dt;
2. ¢(x) =z + V2 [ ¢(t)dt.

Given the general Volterra integral equation of the IT kind

6(x) = f(z)+ A /O " Ko o)t (12.11)
the solution can be expressed in term of the risolvent operator as
o(z) = f(x) + )\/Ox Rz, t, \) f(t)dt (12.12)
where -
R(z,t,\) =Y XKy (1) (12.13)
n=0

where the iterated kernels are defined as
Ky(ot) = K(2.1),  Kopi(2.1) = / Kz, Ko (2 )de. (12.14)
t
In the first case we have Ki(z,t) = e*~ " so the iterated kernels are

Ky(x,t) = / e ey = " — t);
t

’ z—z , z—t x—t ’ T—t et (‘T B t)z r—t
Ks(z,t)= | (z—t)e* e 'dz=¢ (z—t)dz=e ydy = 5
t t 0
z _ f\n—2 _ +\n—1
Kn(l', t) — / (Z t) ez—zez—tdz — (.T t) r—t
. (n—2)! (n—1)!
(12.15)
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The risolvent operator is given by

R(ZE, t, /\) _ Z %636—15 _ ez\(ac—t)ear—t _ 6()\+1)(x—t)’ (1216)

n=0

therefore the solution is simply

x x A1)z
P(x) =1+ / ePHDED gL = 1 4 NP DT / O tgy N G :
0 0 A+1 A+1
(12.17)
In the end
em €(6m+1)x
o) =1- + (12.18)

em+1 em+41°

In the second case we have K;(x,t) = 1 so the iterated kernels are
Ky(z,t) :/ dz =z —1;
t

Kj(z,t) = /tw(z —t)dz = /Ox_ ydy = (x;t) / (12.19)

T(z—t)"? (x —t)"!
K”(x’t):/t ((n—)Q)! ===

The risolvent operator is given by
A" (=" ey
R(z,t,\) = EO — = , (12.20)

therefore the solution is simply

o(z) =x+ )\/ ter @Dt = g 4+ N { - ge’M - / e)‘tdtl =1—¢\. (12.21)
0 0

In the and
dlz) =1— e (12.22)

12.3 Fredholm integral equations of II kind

Solve the following Fredholm integral equations of the II kind using the Fredholm
determinats method:

L p(a) — A [y welp(t)dt = e, (A 1);
2. ¢(x) — X [ (& — 2t)p(t)dt = 0.
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The general Fredholm integral equation of the II kind

b
— )\/ K(z,t)p(t)dt = f(x) (12.23)
can be resolved using resolvent formalism
b
b(x) = F(z)+ A / Rz, t, \) f(1)dt. (12.24)
The risolvent operator can be computed in terms of the Fredhoml determinants:
FD(z,t,\)
L) =———— 12.2
Rlat.0) = s (12.25)
where
FD(x,t,\) = xt—i—Z n' )\” z,t);
(12.26)
FD(X _1+Z1 n, e,
with

. K(x,t,)

(2, 1) /dtl/dt

', Bo(z,t) = K(x,t) (12.27)

K(tp,t) ... K(tn,t,)

n— tzmes
and
K(t,1) ... K(t1,t,)
c, _/ dty.. /dt L : . Cp=1. (12.28)
— tn,t K(tn,tn)

In general these determinants are difficult to compute but we have the following
reletions

b b
By (x,t) :C’nK(x,t)—n/ K(x,s)Bn_1(s,t)ds; C’n:/ B_1(s,s)ds. (12.29)

In the fir case we have K(x,t) = ze' and By(x,t) = xe'. Let us compute the
Fredholm determinants using their definition. First of all we have

1 t t1

xel xe
By(z,t) = dt; =0, B,(z,t) =0 Vn: 12.30
1(z,t) /o Llet tle“} 1 ; (z,1) n ( )
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and

1 1 a
Cl = / tletldtl == / —€at1dt1
0 g Oa

1
= i/' €at1dt1
a1 Oa Jg

a=1
(ale-L
o o a=1
1 1 t t
tie"t t1e*?
Cy = / / { e he } dtydty =0, C, = 0Vn;
0 0 tle 2 tge 2
(12.31)
therefore
FD(z,t,\) = K(x,t) =xe', FD)\)=1-\ (12.32)
The risolvent operator is therefore given by
t
xe
R(x,t,\) = —— 12.33
(0.0 = 7 (12.33)
and the solution of the integral equation is given by
1 t \
d(z) = e + /\/0 f_e cetdt =T f ot (12.34)

In the second case we use the recursive formula to compute the Fredholm deter-
minant. We have C0 =1, By(z,t) =z — 2t so

! 1 1 ! 2

Ci = / —sds = —=, By(x,t) = ——(x—2t)—/ (x—2s)(s—2t)ds = —x—t+2xt+—,
; 2 2 ; 3
(12.35)

then

! 2 1 1 ' 2
Cy = / (—25+25°+2)ds = =, By(x,t) = —(x—2t)—2/ (1—25)(—s—t—2st+-)ds = 0,
0 3 3 3 0 3

(12.36)
then
Cn = By(z,t) = 0Vn > 2. (12.37)
The risolven opertor is
— 2t + (v 4+t — 22t — )\
R(z,t,\) = — (z i ) (12.38)
1+ 5t %
and the solution of the integral equation is
Vo —2t+ (z 4+t — 20t — 2)\ A 1 2
x)=A 3 dt = ————— x—1+)\(x+——x——)}.
) /0 1+234+ 2% 1+§+§{ 2 3
(12.39)
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13 Green function and Sturm-Liuville operators

13.1 Find Green functions

Given the following Cauchy problems find the Green function of the operator:
Loy™(x) =0, y(0) =y'(0) =0,y4(1) =y'(1) = 0;
2. y"(z) + kK*y(z) =0, y(0) =y(1) =0;

The Green function of a boundary-value problem for a differential operator

Dly] = po(x)y(”) +p1(a:)y(”_1) + ...+ pa(x)y=0 (13.1)

is defined as the function G(z,t) defined for a < t < b where « € [a,b] and given by
the following equation

DIG(x,t)] = 8(z — t). (13.2)

It has to satisfy that it is continuous up to order (n — 2)th derivative inclusive (for
an n-order differential operator) while the (n — 1)th derivative has a jump for z = ¢
equal to pOL(t). Moreover it has to satisfy the boundary conditions. This means that
in general the construction of the Green function is a replica of the tool used to
construct weak solution of ODEs. However, for the specific class of Sturm-Liuville
operators, namely

(p(2)y (2)) +q(z)y(x) =0, y(a) = A, y(b) = B, (13.3)

we have a nice formula

1
G(z,t) = W[?ﬂ (2)y2(t)O(t — ) + y2(2)y1(£)O(x — 1)) (13.4)
where y;(x) and yo(z) are two linear independent solutions such that
yi(a) = A, y(b) # B, wa(a) # A, y2(b) = B (13.5)

and W(x) is the Wronskian determinant.

Let us start from the first equation. This is linear and has as set of independent
solutions y;(x) = 1, yo(x) = x, y3(x) = 22, ya(x) = 27; therefore the general solution
is

y(r) = A+ Bz + C2® + Dz°. (13.6)

Imposing the boundary condition we get the relations
A=0,B=0,A+B+C+D=0, B+2C0+3D=0 (13.7)

whose solution is A = B = C' = D = 0. The problem admits only the trivial
solution and so the Green function is unique (this is a theorem: if a boundary-value
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differential problem admits only the trivial solution, the Green function of the operator
is unique).Let us write the Green function as (z € [0, 1])

G(l'—t) = Al +Bll'+01$2+D1$3@<t—l’>+A2+B21’+02$2+D2$3@(Z‘—t), (138)

Imposing the continuity up to the third derivative excluded together with the jump
on the third derivative at x = t, we get

Ay — Ay + (By — By)t + (Cy — Cy)t? + (Dy — Dy)t°+ = 0;
By — By +2(Cy — C1)t + 3(Dy — Dy)t* = 0;

2(Cy — Cy) +6(Dy — D)t = 0;

6(Dy — Dy) = 1;

(13.9)

using, a t this point, that the Green function has to satisfy the boundary condi-
tion,namely

A= 0, B = 0, Ay + By +Cy+ Dy = 0, By +2C5 + 3Dy = 0, (1310)
we can solve to find

t t3 1 2 8
A1 =0, Bi=0,Ci=-—t"+—, Di=—+—-——;
2 2 6 2 6

-l e t2+t Dy— Lt

A _ — — = — = — J— = — — —,

2 67 2 27 2 3, 2 2 3

Plugging back we find the Green function.

Second case is simpler since this is a Sturm-Liuville operator. We may note that
y1(z) = sin(kx) satisfy y;(0) = 0 while yo(z) = sin((k — 1)x) satisfy y2(1) = 0 and
they are linearly independent. The wroskian determinant is given by W (z) = ksin(k)
SO

G(z,t) [sin((k — 1)t)sin(kz)O(t — x) + (t +> s)]. (13.12)

B 1
 ksin(k)
13.2 Solution of ODEs with Green function

Find the solution of the following ODEs using the Green function:

L y'(z) —y(r) =z, y(0)=y(l)=0;
2. y'(x) +y(z) =z, y(0)=y(5) =0;
3. y"(x) + My(z) =z, y(0)=y

There is a theorem according to which if the boundary-vale problem Dy] = 0
with a set of boundary condition B has Green function G(z,t) the solution of the
boundary-value problem D[y] = f(z) with the same boundary conditions is given by

b
y(z) = / Gz, t) f(t)dt (13.13)
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with = € [a, b]. More generally if the boundary-value problem D[y] = 0 with a set of
boundary condition B has Green function G(z,t) the solution of the boundary-value
problem D[y] = Ay(z) + f(z) with the same boundary conditions is given by the
following Fredholm integral equation

b b
y(x) = A / Gz, t)y(t)dt + / G(z,t)f(t)dt (13.14)

with x € [a, b].

Let us start from the first case. This is a Sturm-Liuville operator, let us find the
Green function for the homogeneous problem. Solutions are y;(z) = sinh(x), which
satisfy y1(0) = 0, and yo(x) = sinh(xz — 1) which satisfy y»(1) = 0. The wronskian
determinant is

nh mh(x — 1
{sm (v) sinh(x 1;] ‘ = sinh(x)cosh(x—1)—cosh(x)sinh(x—1) = sinh(1)
(13.15)
where we used the sum and difference formulas for hyperbolic functions. The Green

W(zx) =

cosh(x) cosh(x —

function is

G(z,t) =

sinh(1) [sinh(x)sinh(t — 1)O(t — z) + (z <> t)]. (13.16)

The solution of the original boundary-value problem is given by

y(z) = sz o /0 (sinh(z)sinh(t — 1)O(t — z) + (z <> 1)]tdt
sinh(z — 1) sinh(z) (13.17)

x 1
= — tsinh(t)dt tsinh(t — 1)dt
sinh(1) /0 sinh(t) +smh(1)/x sinh(t = 1)dt,

since

T 1
/ tsinh(t)dt = xcosh(x)—sinh(x), / tsinh(t—1)dt = 1—xcosh(z)+sinh(x—1),
0 T

(13.18)
we get
(2) = sinh(x — 1)[zcosh(z) — sinh(x)] + sinh(x)[1 — zcosh(z — 1) + sinh(x — 1)] _
Y sinh(1)
_ sinh(z) .
sinh(1) '

(13.19)
In the second we have again a Sturm-Liuville operator; y;(x) = sin(x), such that
y1(0) = 0, and y»(x) = cos(z) such that y»(%) = 0. The wronskian determinant is

Wiz) = cos(x) —sin(x

[sm(x) cos(m))} ' = —sin®(z) — cos*(z) = —1 (13.20)
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and the Green function is given by
G(z,t) = —sin(x)cos(t)O(t — x) — (xz <> t). (13.21)

The solution of the original boundary-value problem is given by

™

y(z) = — /0 ?[sin(z)cos(t)O(t — ) + (z < 1)]tdt

= —COS\T

)/ tsin(t)dt — sin(z) /2 tcos(t)dt = (13.22)
)

(
= —cos(x)[sin(z) — xcos(z)] — sin(x)[cos(x) + xsin(x)] =

= 2[cos*(z) — sin*(z)] — 2cos(z)sin(x).

The last case is more complicated. First of all let us determine the Green function
for the homogeneous problem with A = 0. This is a Sturm-Liuville operator and the
two linearly independent solutions are y,(z) = x, so 1(0) = 0, and ya(7) = — 7, so
y2<%) = 0. The wronskian determinant is easly computed to be W (x) = 7; therefore

the Green function is given by

Glat) = % [x (t - g)@(t o)+ (o t)} | (13.23)

The solution can be expressed as integral equation

™

y(z) = —A/2 2 [ (t - g>@(z )tz o t)]y@)cm

.T?’ 7T21L’

:—A/O F{ (t—§>6(t—a:)—l—(:lr<—>t)]y(t)dt+€—g;

we now have to solve this Fredholm integral equation. The solution is given in term

% { (t— —> (t—z)+ (z <—>t)}tdt: (13.24)

of the risolvent operator

3 2 FD(x,t,\) (t° 7%t
= )\ — o — — — |dt; 13.2
Vo) =5 -5 /0 FD(\) (6 24) ’ (13.25)

14 PDEs

14.1 Wave equation

Solve the following problems for the wave equation:

1. wy — gy = cos(z), u(z,0) = sin(z), u(r,0)=1+ux;

— 67 —



2. Uy — =0, u(z,0)=0, w(zr,0)=0, u(0,t) =0, u(r,t) =0, t <0, z €
[077T]‘

PDEs are not trivial to solve. In the case of nonhomogeneous wave equation we
can solve a nonhomogeneous initial condition problem using d’Alambert and Duhamel
formule

u(z,t) = u?(2,t) +uP(z,t) =

1 1 :c—l—ct T4c(t— s)
2[g(x+ct)+g(m—ct])—l—20/ ds+—/ / s)dyds

—ct c(t—s)

(14.1)
where f(x,t) is the nonhomogeneous term while g(z) and h(x) are the initial conditions
on the function and its derivative respectively. In the case of mixed boundary/initial
condition and support in a limited region the solution can be found in term of Fourier
series where the coefficients are constrained by the boundary /initial mixed conditions.

Let us start with the first problem. The solution is easily computed using
d’Alambert and Duhamel fomrmule

1 1 x+ct
u(z,t) = 5[3@71(37 + ct) + sin(x — ct)] + % / (1+s)ds =
c

r—ct

1 2
= sin(x)cos(ct) + % [s + %] = sin(x)cos(ct) + xt + t;

z+c(t—s)
(x,t) / / cos(y)dyds =
" 2
1

[sm(m —c(t —s)) — sin(x + c(t — s))|ds = —(cos(z) — cos(z)cos(ct)).

" 2 0 c
(14.2)
Therefore the solution is

u(zx,t) = sin(x)cos(ct) + xt + x + C%(cos(x) — cos(x)cos(ct)). (14.3)

In the second case we have mixed conditions and we need to use Fourier series.
We write

u(z,t) = aO( + Zan Jeon(nz) + by, (t)sin(nz); (14.4)

the boundary conditions fix the coefﬁments

o0

- ian(t) —0 (14.5)

n=1

u(0,t) =

a,(t) =0, wu(mt)=

whose solution is a,(t) = 0¥n € N. So we have

Z b, (t)sin(nz) (14.6)
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and plugging back into the equation we get

i V' (t)sin(nz) + i b(t)n?sin(nx) = 0 = b"(t) + n’b(t) = 0; (14.7)

n=1 n=1
this is an ODE whose solution is given by
by (t) = epsin(nt) 4+ d,cos(nt). (14.8)
Coeflicients are determined by initial conditions
u(z,0) =1= Zdnsin(nx) =1, u(z,0)=0= chnsin(nx) =0 (14.9)
n=1 n=1

so multiplying by sin(mz) and integrating we get (using the orthogonality of the sine
functions [ sin(ma)sin(nz) = Zomn)

/ sin(mx)dr = dmz, / Odx = mcmz. (14.10)
0 2 0 2
Therefore
2 ——— dd
dp = (1 —con(nm)) =4 m " o 0 (14.11)
mm 0 m even
and we get
b (t) = “Lcos(nt)  m odd, (14.12)
! 0 m even; '
and in the end we get the solution
4 N cos((2n + Dt)sin((2n + 1))
= — . 14.1

14.2 Heat equation
Solve the following problems for the heat equation:
1w =Au+1, u(Z0)=1 t>0, 7R
2. Ut = Upp, u(z,0)=2?—2+1, u(0,t)=1, u(2,t)=3, =x€l0,2], t>0.

To solve the heat equation we can use, for example, the method of the kernel or
the separation of variables. In the first approach we use Fourier transform to write

— .9

(u) (k) = (k). Au(k, 1) = —[kPalk, 1), (14.14)
to rewrite the n-dimensional homogeneous heat equation as
%WZ, t) = —|k|*a(k, t), (14.15)
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whose solution is a(k,t) = Ce~ ¥’ The initial condition is given by a(k,0) = f(k)
from which we get
C = f(k), (14.16)

therefore the solution is given by
a(k,t) = f(R)e ** = u(@,t) = f(k)eIFPt (14.17)

performing the Fourier inversion we get

u(#,t) = ﬁ / 5 fly)dy = 0 (3 1). (14.18)

For a non-homogeneous heat equation with non-homogeneous term ¢(Z,t) with
non-homogeneous initial condition we have, using Duhamel principle,

««2

1 ClEa? ! 1 _lE= .
=t IO [ [ om s
(14.19)

Another useful method to solve homogeneous heat equation is the separation of

variables. First of all we need to find a function
v(Z,t) = u(Z,t) + (ax +b) (14.20)

with a, b such that v(0,¢) =0, v(2,t) = 0. Then we perform a separation of variables
v(Z,t) = X(&)T(t) and inserting in the original equation we end with a system of
two ODEs. Taking into account the initial condition we are able to fix the coefficients
of the expansion of the function v(Z,t); returning to u(Z,t) we get the solution.

Let us start with the first case. Using the kernel method we have (using gaussian

2
integral with a = e~ o b= —+,c=2x,,d=0)

4t’

1 ik
uF(Z,t) = /e_ 2 doy =

(47rt)% RS
1 o0 21 —y1)2 +o0 ©
_ (4 )5 (/ e_( 14;/1) dy1)</ o _(®5—y5)” u5) dy5) _
mt)2 \J oo —o0 (14.21)
1 23 (1612 —1) 22 (1612 1)
= T )5 VAtme 4 | Vdtme ® =
7t)2
_ €|f|2<1ftt2—1>’

and

_lz—g?
= e =) d’yds =
0 t — s R5
122 (16(t—s)%—1) 5)2 1)
= T 4A(t—s) dS
0
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So the solution is given by
u(z,t) = e% + /t ewds. (14.23)
0
In the second case we use the separation of variable method. Let us put
v(z,t) = u(z,t) + (ax + b) (14.24)

with a, b such that

v(0,6) =0=>0=u(0,t) +b=1+b=b=—1;

(14.25)
U<2;t>:O:>O:U(2,t>—|—2a—1:2a+2:>a:_1;

therefore
v(z,t) =u(x,t) —z — 1. (14.26)

We have reduced the problem to v; = vy, v(z,0) = 2?—z+1—2—1 = 2222, v(0,t) =
0, v(2,t) =0, z €[0,2], t > 0. We now put

v(x,t) = X(z)T'(t) (14.27)
and from the boundary conditions we have
v(0,t) = X(0)T(t) =0, v(2,t)=X2)T(t)=0= X(0)=X(2)=0. (14.28)

Interting in the equation we get

X" T
XT'—X”T:O:>Y:? (14.29)
Since XTH and TT, are independent functional ratios, the only possibility is that they
are equal to the same constant —\, we get
X"+ AX =0, T'+\T=0. (14.30)
From the first equation we get
X () = acos(VAx) + bsin(V/\x); (14.31)

and using the boundary condition X (0) = X (2) = 0 we get
X(0)=a=0, (14.32)
so X (x) = bsin(v/A\zx), and

X(2) = bsin(2VA) =0 = A = (?)2 (14.33)
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Since there is an n in A, this means that we have a set of function X,,(X) that are
avaible solutions instead of only one:

nnx

Xp(x) = bnsm<7>. (14.34)
Knowing A we can solve the equation for T'(t) (we will get a set of function labelled
by n for the same reason of before), we get

nm

T (t) = cpe” (37, (14.35)

the solutions is so

v(z,t) = ; X (2)T,(t) = ; bnCpsin (?) e~ (5 = ; d,sin (?) e~ ()%
(14.36)
where d,, = b,c,. The sum is there because since each v, (z,t)) X, (z)7T,(¢) is a solution,
the most general solution will be given by a combination of v, (x,t) (this is true only
because the heat equation is linear). The coefficients d,, can be found using the initial
condition

— 2?9 2 _ 95 = N7 d, sin 222 14.37
v(x,0) =2z r=u x Z sm( 5 ( )

n=1

from which, using ortogonality of sine function, we get

2 . (mrzx 0 m even
dm :/0 (z* —Qx)sm( 5 ) = { 4 : (14.38)

—m m Odd

The solution is so

- 32 A (2n+ Dz _(enor)?,
v(x,t)zg—«%_i_l)ﬂ)sm(( 5 ) )e (=) : (14.39)

and returning back to function u(z,t) we find the solution of the original problem

2 2 1 2n+1)m 2
e il) S)Sin(( n+2 ﬁm)e(( ) "o+l (14.40)
n m

WE

u(z,t) =

Il
o

n
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