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Abstract

Orientifold projections are an important ingredient in geometrical engineering of Quantum
Field Theory. However, an orientifold can break down the superconformal symmetry and
no new superconformal fixed points are admitted (scenario II); nevertheless, in some cases,
dubbed scenarios I and III orientifold, a new IR fixed point is achieved and, for scenario
III examples, some still not fully understood IR duality seems to emerge. Here we give
an algebro-geometrical point of view of orientifold for toric varieties and we propose the
existence of relevant operators that deform the starting oriented CFT triggering a flow.
We briefly discuss a possible holographic description of this flow.
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1. Introduction

AdS/CFT correspondence is a masterpiece of modern physics: its impact in linking
physics and geometry has opened new doors and laid the foundations for new research fields.
The original Maldacena AdS/CFT correspondence [1] can be extended to phenomenologi-
cally interesting constructions that require 4D SUSY gauge theories with N = 1 or N = 2.
The starting point is to embed our stack of N D3-branes into a background space-time of
the form M3,1 × C(X5) where C(X5) is a Calabi-Yau (CY) cone over a Sasaki-Einstein
(SE) manifold X5. The geometry properties of the CY define the field theory on the branes
but for general Calabi-Yau cone it is hard to build up the worldvolume gauge theory. We
restrict ourselves to the class of toric CY [2, 3, 4] since this type of varieties allows an
algorithmic construction of the field theories. The first example of this kind of AdS/CFT
extensions is due to Klebanov and Witten in their 1998 pioneering work [5]. The toric
condition simplifies a lot the geometric description of the Calabi-Yau cone, indeed all the
information is stored into the toric diagram, as we will review in the Paragraph 2.1, and
the emerging field theories can be studied using well established brane tiling techniques
[6, 7, 8, 9, 10, 11, 12].

In Superconformal Quantum Field Theories (SQFTs), that emerge from the geometrical
engineering with toric CY cone, we can consider the so-called orientifold projections
[13, 14, 15] that are reviewed in Paragraph 2.2. The action in the string theory side is to
make open oriented string unoriented and, according to a Chan-Paton-like analysis, real
group such as SO(N) and Sp(2N) are allowed in the emerging SQFTs. In 1995 Polchinski
realized [16] that orientifold projections have a simple and elegant interpretation from the
point of view of the background space-time: they correspond to not dynamical, mirror-like
objects called orientifold planes, defined by T -duality as fixed points of the orientifold
projections. On the field theory side, orientifold projection affects fields and superpotential,
and its effect can be understood using the brane tiling picture [17].

Let us indicate orientifold with Ω, therefore quantities after orientifold projection will be
labelled with the apex Ω. The theory before orientifold is often referred to as the "parent",
"oriented", "pre-orientifold" or "unorientifolded" theory while the one after orientifold as
"daughter", "unoriented", "post-orientifold" or "orientifolded" theory. Similar names hold
for quantities in the theories.
The presence of orientifold planes modifies the Renormalization Group (RG) flow, and two
different scenarios are mostly investigated in literature. On the one hand, in the scenario I
there is a new fixed point and the R-charges of operators that are not projected out are
the same as the charges of the corresponding parent theory in the large N limit; this gives
us a central charge aΩ that is half the central charge of the parent theory. On the other
hand, in the scenario II the daughter theory does not have a fixed point.

Despite this, recently [18, 19], a new possibility seems to enter in the game: the so-called
scenario III. In this case it is possible [18, 19] to construct an orientifold projection such
that the central charge aΩ is less than half of the central charge a of the parent theory.
Moreover, the R-charges before and after the orientifold are not the same. The interesting
behavior is that the values of the R-charges and central charge coincide, beyond the large
N limit, with those of another theory that has the scenario I orientifold. This seems to
suggest an IR duality which is in the IR regime because the central charge a gives us, due
to c-theorem in 4D, an RG flow ordering of theories. Therefore we know that the sce-
nario I and III orientifolds are lowering the energy moving the theories into their IR regimes.
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Here we present an algebraic-geometrical interpretation of orientifold, motivated by
Greene’s flop transition and the search for a quantum geometry [20, 21, 22, 23], as
morphisms between algebraic varieties. Orientifolds are thought as maps that act both on
the states of the theory and on the Calabi-Yau cones geometry. The net effect is an RG
flow towards the IR regime, from the original oriented model to an unoriented one (see
Figure 9 to have a schematic picture in mind).
In Paragraph 2.1 we review toric varieties and toric CY discussing the construction of
manifolds as algebraic subvariety of the complex space while in Paragraph 2.2 we review
orientifold projection and its possible scenarios. In Sections 3 and 4 we discuss the algebro-
geometrical interpretation of orientifold and the possible way RG flows triggered by the
orientifold itself can be holographically interpreted.

2. Background material: toric geometry and orientifold

2.1. Toric varieties and toric Calabi-Yau
Toric geometry is a branch of algebraic geometry and a toric variety is, by definition,

an algebraic variety containing an algebraic torus as an open dense subset, such that
the action of the torus on itself extends to the whole variety. To be more specific, an
n-dimensional toric variety M has an algebraic torus action in the sense that the algebraic
torus Tn = (C∗)n is a dense open subset and there is an action Tn×M → M. The greatest
point in favor of toric geometry is that geometry of a toric variety is fully determined by
combinatorics.
In the case of a toric Calabi-Yau variety the information about the geometry is summarized
in the so-called toric diagram which is a polytope embedded in a Zn−1-lattice. Moreover,
when we consider a toric Calabi-Yau threefold cone the action of the algebraic torus
enlarges the isometry group of the variety from U(1), the action induced by the Reeb
vector field, to U(1)3. Let us briefly review some possible constructions of toric varieties
[2, 3, 4].

2.1.1. Homogeneous coordinates approach to toric varieties
The simplest way we can image toric variety is as generalization of weighed projective

space [24]. Let us recall first the definition of the (m− 1)-dimensional weighed projective
space

CPm−1 =
Cm \ {0}

C∗ , (1)

where the quotient by C∗ is taken into account by the identification (z1, ..., zm) ∼
(λi1z1, ..., λ

imzm) where λ ∈ C∗ and (i1, ..., im) are the so-called coordinates weights. An
n-dimensional toric variety M is the generalization where we quotient by more than one
C∗ action and the set that we subtract is a subset UΣ which contains not only the origin

M =
Cm \ {UΣ}
(C∗)m−n × Γ

, (2)

where Γ is an abelian group. This variety has an algebraic torus action given by
(C∗)m−m+n = (C∗)n. Definition (2) emerges in the context of cones and fans that we are
going to discuss.
Let M and N be dual n-dimensional lattices isomorphic to Zn and consider the vector
spaces MR and NR to be the subspace of Rn spanned, respectively, by vectors in M and
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N . We define the Strongly Convex Rational Polyhedral Cone (SCRPC) σ ∈ NR ⊂ Rn as
the set

σ :=

{ m∑
i=1

aiv⃗i

∣∣∣∣ai ∈ R, ai ≥ 0, v⃗i ∈ Zn ∀i
}

(3)

for a finite number of vectors vi and satisfying the condition (σ) ∩ (−σ) = {0}. Let us
analyze this definition: we consider an n-dimensional lattice N ≃ Zn, a SCRPC is an n
or lower dimensional cone in NR with the origin of the lattice as its apex, bounded by
hyperplanes (polyhedral) with its edges spanned by lattice vectors (rational) and such
that it does not contain complete lines (strongly convex). The dimension of a SCRPC σ is
the dimension of the smallest subspace of Rn containing σ. Two important concepts are
useful in SCRPC theory:

• edges: these are the one dimensional faces of σ, the vectors g⃗ associated to the edges
are the generators of σ;

• facets: these are the codimension one faces.

Figure 1: Examples of SCRPCs. Left: SCRPC in R3, its one dimensional faces are identified by the vectors
g⃗1 = (1, 0, 0), g⃗2 = (0, 1, 0), g⃗3 = (0, 1, 1), g⃗4 = (1, 0, 1) in Z3. Right: SCRPC in R2, its one dimensional
faces are identified by the vectors g⃗1 = (0, 1), g⃗2 = (1,−1) in Z2.

A collection Σ of SCRPCs in NR is called fan if each face of a SCRPC in Σ is also a
SCRPC in Σ and the intersection of two SCRPCs in Σ is a face of each. Examples of
SCRPCs and fan are reported in Figure 1 and Figure 2.

Figure 2: Examples of fan. Left: fan of CP1 × CP1, we have four one dimensional SCRPCs (the vectors)
and four two dimensional SCRPCs (the quadrants). Right: fan of CP2, we have three one dimensional
SCRPCs (the vectors) and three two dimensional ones (the trians).
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Let us consider a fan Σ and we call Σ1d the set of one dimensional SCRPCs; let v⃗i with
i = 1, ...,m be the whole set of vectors generating the one dimensional SCRPCs in Σ1d

2.
To each vector v⃗i we associate a homogeneous coordinate zi ∈ C and we define the set

UΣ :=
⋃
I

{(z1, ..., zm)|zi = 0 ∀i ∈ I}, (4)

where the union is taken over all the sets having I ⊆ {1, ...,m} for which zi with i ∈ I
does not belong to a SCRPC in Σ.

At this point we need to discuss how the (C∗)m−n × Γ acts on Cm. First of all, let us
clarify the nature of the abelian group Γ: this is given by

Γ :=
N

Ñ
, (5)

where Ñ ⊆ N is the sublattice generated over Zn by the vectors v⃗i. In other words, vectors
v⃗i not necessarily generate all N , in general they generate only Ñ ; on the one hand, if
Ñ = N then Γ is trivial and it does not play any role. On the other hand, if Γ is no trivial
our variety develops orbifold singularity.
Let us now discuss the algebraic torus (C∗)m−n action. Consider the n×m matrix build
up considering the m vectors v⃗i with n components

V k
i =


v11 v12 . . . v1m

v21
. . . . . . v2m

...
... . . . ...

vn1 vn2 . . . vnm

 , (6)

this induces a map ϕ : Cm → Cn defined by

(z1, ..., zm) 7→
( m∏

i=1

z
v1i
i , ...,

m∏
i=1

z
vni
i

)
. (7)

Thanks to the rank-nullity theorem3 the dimension of the Kernel of map (7) must be
m− n; we can identify it with (C∗)m−n. It is now simple to see how (C∗)m−n acts on Cm:
each C∗ action is taken into account by

(z1, ..., zm) 7→ (λQa
1z1, ..., λ

Qa
mzm), (8)

with λ ∈ C∗. We have m− n actions like (8), where for each a = 1, ...,m− n the charge
vectors Qa = (Qa

1, ..., Q
a
m) belong to the Kernel of the map ϕ and therefore must satisfy

2Note that obviously m is equal to the number of one dimensional cone and so to the number of
elements in Σ1d

3Given T a linear map between two finite dimensional vector spaces A and B we have that dim(Im(T ))+
dim(Ker(T )) = Rank(V ) + Null(V ) = dim(A). In our case we know that v⃗i with i = 1, ...,m are m
linearly independent vectors so Rank(V ) = dim(Im(T )) = m.
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m− n relations
m∑
i=1

V k
i Q

a
i = 0⃗. (9)

Quotient (C∗)m−n out means taking into account the equivalence relations

(z1, ..., zm) ∼ (λQa
1z1, ..., λ

Qa
mzm) (10)

for a = 1, ...,m− n.
To summarize, we can define the toric variety as

M =
Cm \ {UΣ}
(C∗)m−n × Γ

; (11)

this is an n-dimensional variety, with a residual (C∗)n ≃ U(1)n action and the (C∗)m−n

action is quotient out by m− n relations (10) with weights that satisfy relations (9). Let
us give an example.

Example: CP2

Let us consider the right fan in Figure 2: this is a Z2 lattice; we have the three vectors
v⃗1 = (0, 1), v⃗2 = (1, 0), v⃗3 = (−1,−1) that generate one dimensional cones. We have three
homogeneous coordinates (z1, z2, z3) ∈ C3 and the set UΣ is given by the origin. Since
m = 3 and n = 2 we must have one C∗ action and we can find the weights using (9):

v⃗1Q1 + v⃗2Q2 + v⃗3Q3 = (0, 1)Q1 + (1, 0)Q2 + (−1,−1)Q3 =

= (Q2 −Q3, Q1 −Q3) = 0⃗ ⇒ Q1 = Q2 = Q3 = 1;
(12)

C∗ action is taken into account by the equivalence relation (z1, z2, z3) ∼ λ(z1, z2, z3).
Finally we note that the vectors v⃗1 and v⃗2 generate the whole lattice Z2 and so Γ is trivial.
The toric variety corresponds to

M =
C3 \ {0}

C∗ ≡ CP2, (13)

as we expected.

We now give some interesting properties about toric varieties and their fans:

• a fan Σ is smooth if every SCRPC in Σ is smooth, a SCRPC is smooth if is generated
by a subset of a basis of N ≃ Zn;

• a fan Σ is simplicial if every SCRPC in Σ is simplicial, a SCRPC is simplicial if it is
generated by a subset of a basis of Rn;

These conditions are important since if a fan is smooth the corresponding toric variety
also is smooth and if a fan is simplicial then the corresponding toric variety can have
at most orbifold singularities. We see immediately that the two spaces described by the
fans in Figure 2 are smooth since every SCRPC is generated by a subset of a Z2 basis.
An example of toric variety with orbifold singularities is the weighted projective space
CP2,3,1; its fan is given by the Figure 3 below. Orbifold singularities can be removed by
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Figure 3: Fan of CP2,3,1, we have v⃗1 = (1, 0), v⃗2 = (0, 1), v⃗3 = (−2,−3). It is not smooth but it is
simplicial: CP2,3,1 has orbifold singularities.

the so-called blow up procedure: roughly speaking, for a n-dimensional toric variety we
replace the singular locus by CPn−1.

Let us now specialize to the case of our interest: CY threefolds. First of all, we have an
U(1)3 ≃ (C∗)3 action but there is more: the condition of trivial canonical bundle implies
that all the vectors of the fan belong to the same hyperplane, so we can project on this
hyperplane obtaining a two dimensional object whose convex hull takes the name of toric
diagram. The CY condition implies

CY condition ⇒
m∑
i=1

Qa
i = 0 ∀a. (14)

Example: the conifold C
Consider the three dimensional fan given by the four vectors v⃗1 = (1, 0, 1), v⃗2 =

(0, 0, 1), v⃗3 = (0, 1, 1), v⃗4 = (1, 1, 1). We note that these vectors belong to the same
hyperplane, so we can project out the third component: we obtain w⃗1 = (1, 0), w⃗2 =
(0, 0), w⃗3 = (0, 1), w⃗4 = (1, 1). Hence the conifold is a CY variety and its toric diagram is
given below.

z2

z3

z1

z4

Figure 4: Toric diagram of the conifold.

We have m− n = 4− 3 = 1 charge vector given by relation (9):1 0 0 1
0 0 1 1
1 1 1 1



Q1

Q2

Q3

Q4

 = 0⃗ ⇒


Q1 +Q4 = 0

Q3 +Q4 = 0∑4
i=1 Qi = 0

(15)

and a possible solution is Q = (1,−1, 1,−1). As one can note the CY condition is
automatically implemented by the fact that the vectors are coplanar. The action of the
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algebraic torus C∗ is quotient out by the equivalence relation

(z1, z2, z3, z4) ∼ (λz1, λ
−1z2, λz3, λ

−1z4). (16)

Let us consider the C∗-invariant polynomials: by (16) we note that

Z1 = z1z2, Z2 = z1z4, Z3 = z2z3, Z4 = z3z4 (17)

are invariant and this is the minimal basis with which to write all the C∗-invariant
polynomials. However, note that these polynomials are not independent but they must
satisfy the relation

Z1Z4 = Z2Z3 (18)

which is the defining polynomial of the conifold [5].

Example: C2

Z2
× C

Consider the fan generated by the vectors v⃗1 = (0, 0, 1), v⃗2 = (0, 1, 1), v⃗3 = (1, 0, 1), v⃗4 =
(−1, 0, 1); projecting out the third component we get w⃗1 = (0, 0), w⃗2 = (0, 1), w⃗3 =
(1, 0), w⃗4 = (−1, 0) and the toric diagram is

z1

z2

z3z4

Figure 5: Toric diagram of C2

Z2
× C.

We have m− n = 4− 3 = 1 charge vector given by0 0 1 −1
0 1 0 0
1 1 1 1



Q1

Q2

Q3

Q4

 = 0⃗ ⇒


Q3 −Q4 = 0

Q2 = 0∑4
i=1Qi = 0

(19)

and so Q = (−2, 0, 1, 1). Since we have one vanishing component, Q2 = 0, the coordinate
z2 has no role and so we will expect a CY toric manifold of the form X × C, where X is
unknown for the moment and C is the space associated to z2. We have the equivalence
relation

(z1, z2, z3, z4) ∼ (λ−2z1, z2, λz3, λz4); (20)

since on z2 the algebraic torus action is trivial we do not consider it and so we must find
m− 1 = 4− 1 = 3 C∗-invariant polynomials, for example

Z1 = z1z3z4, Z2 = z1z
2
3 , Z3 = z1z

2
4 , (21)

and they satisfy the relation
Z2Z3 = Z2

1 . (22)

Relation (22) is the realization of C2

Z2
as subvariety of C3. In the end, the toric CY variety

is C2

Z2
× C.
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The general algorithm to identify to which variety a toric diagram belongs is the
following: given the toric diagram we look at the equivalent relations that quotient out the
algebraic torus action (C∗)m−n and we construct a minimal basis of m (C∗)m−n-invariant
polynomials; the m− n relations that these polynomials must satisfy identify the toric
variety as subvariety of Cm.

2.1.2. Moment maps approach and Delzant-like construction
Let us take a step back and consider a different way to define toric varieties. Let M

be a symplectic manifold of real dimension 2n with symplectic form ω. Given the action
U(1)n ×M → M this is said to be hamiltonian if its restriction to any U(1) ⊂ U(1)n is
hamiltonian and any two of them commute. In this context the so-called moment map
µ : M → Rn emerges, whose components are the hamiltonians of each U(1) action. Since
all the U(1) commute, for any r⃗ ∈ Rn, its preimage µ−1(r⃗) is invariant under the action of
the full U(1)n. Moreover, if M has a Kähler structure, the existence of the hamiltonian
action implies that the isometry group contains the algebraic torus U(1)n ≃ (C∗)n. So a
toric variety emerges in a simple way as a real 2n dimensional symplectic manifold M
that has an hamiltonian action of the algebraic torus on it4.
We are interested in non-compact toric varieties but let us talk a little about compact
ones. If M is compact, Delzant [25] showed that the image through the moment map
of the variety, µ(M), is a convex polytope ∆ called Delzant polytope; however we are
interested in CY cones, i.e. non-compact toric varieties. The generalization to a Deltzan-
like construction is possible [26] but the image under the moment map it is no longer a
polytope but a cone:

Θ = {r⃗ ∈ Rn|r⃗ · v⃗i ≤ 0, v⃗i ∈ Zn} (23)

and its dual graph is still a fan generated by the normal vectors v⃗i. Calabi-Yau condition
imposes that v⃗i are coplanar so we can project out the common component and get
an (n − 1)-dimensional object that encode the geometry: the toric diagram. Since the
components of the vectors v⃗i are integers, the toric diagram is the convex hull of a set of
point in a Zn−1-lattice. In Deltzan-like approach, toric variety is built up using Kähler
quotient and the toric variety is a U(1)n fibration over Θ: one U(1) ⊂ U(1)n shrinks on
the edges and so acts trivially, moreover, since in a vertex n edges meet each others the
full U(1)n fiber shrinks. Hence the vertexes are the fixed loci of the full algebraic torus
action. It is interesting to note that this construction is well known by physicists: this
is the moduli space of the Gauged Linear Sigma Model (GLSM), it is a SUSY gauge
theory with abelian gauge group U(1)m−n and m chiral superfields Z1, ..., Zm with charges
Q1, ..., Qm−n under the m− n U(1).

In the case of our interest, namely CY threefold, the toric diagram is a two dimensional
object and the CY cone threefold exhibits a three dimensional algebraic torus action. From
the toric diagram we can get information on the dual QFT using the five brane system
and brane tiling constructions; moreover we can calculate some useful quantities of the
dual field theory directly from the toric diagram, such as the central charge, using the
Butti and Zaffaroni procedure [27] or the symplexic decomposition procedure [28].

4There is a little caveat: if M is a cone the algebraic torus action must commute with the homothetic
action induced by the Euler vector field.
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2.2. Orientifold projections
Denoting by 0 ≤ σ ≤ π the coordinate describing the open string at a given time,

the two ends σ = 0, π contain, thanks to Chan-Paton indexes, the gauge group degrees
of freedom and the corresponding charged matter fields. At the endpoints we can apply
Dirichlet or Neumann boundary conditions and we know that under T -duality these are
interchanged. Orientifold projections of Type IIB theory are obtained by projecting the
Type IIB spectrum by the involution Ω (Ω2 = 1), exchanging the left and right closed
oscillators α̂µ

m, β̂µ
m and acting on the open strings as phases:

closed strings ⇒ ΩXµ(τ, σ)Ω−1 = Xµ(τ,−σ) ⇒ α̂µ
m ↔ β̂µ

m,

open strings ⇒ ΩXµ(τ, σ)Ω−1 = Xµ(τ, π − σ) ⇒ α̂µ
m → ±(−1)mα̂µ

m.
(24)

The overall effect is that orientifold projections map oriented strings to unoriented ones and
type I superstring theory is nothing but an orientifold projection of type IIB superstring
theory [29]: type I = type IIB

Ω
.

Orientifold introduces, from the worldsheet point of view, new surfaces in the Polyakov
topological expansion. Indeed, due to the presence of unoriented strings, also non-orientable
surfaces such as Klein bottle or Möbius strip are allowed. From the space-time viewpoint,
these correspond to not dynamical objects, called O-planes, defined by T -duality as fixed
point of the orientifold projection [30].

However this picture is not the complete one since, nowadays, there are no results in
actual string theory for what one might expect to be the curved back-reacted geometry
of orientifold. Indeed as reported in [31], for any solution with O-planes, the presence of
such a plane is inferred by comparison with their flat-space behavior. However, since the
orientifolded space-times have strong curvature and coupling, stringy corrections come
into play, and it is impossible to decide with supergravity alone whether the solutions are
valid. Therefore, it is natural to think of more general behaviors in which geometric phase
transitions due to the presence of orientifold can play a crucial role. Since this kind of
behaviors are highly non-perturbative we expect something happens in the field theory
that goes beyond the large N limit.

This orientifold construction has important consequences on the emergent field theory
build up with the AdS/CFT and toric CY machinery: some degrees of freedom are projected
out and orthogonal and symplectic groups are now allowed together with symmetric and
antisymmetric representations of unitary groups. Rules for construction of these kind
of theories are studied for example in [17, 32, 33, 34]. The crucial point here is that
orientifold can give rise to different scenarios:

• in scenario I there is a new superconformal fixed point and the R-charges of the
operators that are not projected out by Ω are the same as the charges of the
corresponding one in the oriented theory and in the large N limit. In the end, the
post-orientifold central charge aΩ turns out to be half of the pre-orientifold central
charge a;

• scenario II does not admit a new superconformal RG fixed point;

• in scenario III there is a new superconformal fixed point but the R-charges of the
operators that are not projected out by Ω are different from the charges of the
corresponding one in the oriented theory and not only at large N . In the end, the
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post-orientifold central charge aΩ turns out to be less than half of the pre-orientifold
central charge a. However, something very interesting happens here: this could be
(one of) the right field theory dual to the non-perturbative action of orientifold in
the string theory side.

2.2.1. The scenario I orientifold
The scenario I orientifold occurs when the pre and post orientifold R-charges of the

theories are the same and the central charge post orientifold is half of that pre orientifold:

aΩi = ai, a
Ω =

a

2
. (25)

The Calabi-Yau cone describing the theory before and after the orientifold is then the
same but with different volume due to the orientifold action. Moreover, due the c-theorem
in 4D, according to which aIR < aUV , scenario I orientifolds lead to the IR regimes of the
theory.

2.2.2. The scenario II orientifold
The scenario II seems to be quite trivial: there is no new superconformal point and the

orientifold breaks conformal symmetry. However, as known in literature, these situation
can give rise to a duality cascade or conformal symmetry can be restored with flavor branes
[35].

2.2.3. The scenario III orientifold and the IR duality
In the scenario III orientifold the pre and post orientifold R-charges of theory are not

the same and the post orientifold central charge is less than half of that pre orientifold
[18],[19]:

aΩi ̸= ai , aΩ <
a

2
. (26)

In this case the Calabi-Yau cones describing the theory before and after the orientifold
are not the same. Scenario III orientifold seems to be part of a bigger picture where
geometry/topology transitions play a crucial role. Note that, since the c-theorem in 4D
tells us that aIR < aUV , also scenario III orientifolds lead to the IR regimes of the theory.

3. Algebro-geometrical orientifold and IR dualities

The IR duality we are talking about was recently proposed in [18] studying the
orientifold projections of Pseudo del Pezzo models (PdP) and subsequently extended to an
infinite class of models in [19]. Given two different oriented models oCFTA and oCFTB,
which have nothing to do one with each other, turns out that exist orientifold projections
such that the R-charges, central charges and superconformal indexes of the two unoriented
uCFTA and uCFTB models are the same [18, 19]

aΩi = bΩi = bi , aΩA = aΩB =
aB
2

, IΩ
A = IΩ

B . (27)

This suggests the proposed duality and since orientifold leads to the IR regime, this is
an IR duality. More specifically the oCFTA has a scenario I orientifold while the oCFTB

has a scenario III orientifold and the set of R-charges, central charges and superconformal
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indexes of the two unoriented models are the same for any finite value of N . What we
have said in words is summarized in the following scheme.

(ai, aA)
(
aΩi ̸= ai, a

Ω
A <

aA
2

)
oriented model A

scenario III orientifold projection−−−−−−−−−−−−−−−−−−−−→ unoriented model A

IR duals

xy
oriented model B

scenario I orientifold projection−−−−−−−−−−−−−−−−−−−−→ unoriented model B

(bi, aB)
(
bΩi = bi, a

Ω
B =

aB
2

)
(28)

Some examples of the IR duality due to orientifold in scenario III seems to be explained
and interpreted, from the field theory point of view, in terms of inherited S-duality from
the N = 2 case. The authors observe that the duality for the N = 1 models discussed
in [19] corresponds to S-duality at different points of the conformal manifold [36, 37, 38].
Therefore the duality between the two unoriented models can be thought as a conformal
duality. The crucial property behind this result is the presence in the spectrum of two-
index tensor fields with R-charge equal to one, uncharged with respect to the other global
symmetries.

Our main goal is to better understand the link between orientifolds and the IR
duality from the point of view of the geometry. The guiding ideas are the flop transition
and the other geometry/topology changing in string theory compactifications, where the
geometry/topology of CY manifold are modified due to a quantum behavior of the geometry
itself [20, 21, 22, 23]. Heuristically, one suspects that geometry/topology might be able
to change by means of the violent curvature fluctuations, such as induced by orientifold,
which would be expected in any quantum theory of gravity. Therefore, the basic idea is
that orientifold projections map the algebraic equations describing the geometry of the
CYA into those that describe the geometry of the CYB. This orientifold modifies the
geometry of the CYA cone due to its intrinsic non-perturbative nature and this geometrical
change induces k new degrees of freedom with R-charges ãi to emerge (we will call them
orientifold-mapping operators or oµ-operators). They make the original field theory no
longer fulfilling the condition

∑d
1 ai +

∑k
1 ãi = 2; hence old R-charges ai and oµ-operators

R-charges ãi must mix together to return a set of new R-charges aΩi = bi consistent with
the modified CYΩ

A cone geometry, that is now CYB cone, and satisfying the condition∑d
1 bi = 2. Steps are summarized in the following scheme.

(ai,CYA)
(
aΩi ̸= ai, ãi,CY

Ω
A = CYB

)
oriented model A

scenario I orientifold projection−−−−−−−−−−−−−−−−−−−→ unoriented model A

IR duals

y(ai and ãi R−charges mixing)

oriented model B
scenario I orientifold projection−−−−−−−−−−−−−−−−−−−−→ unoriented model B

(bi,CYB)
(
bΩi = bi,CYB

)
(29)
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The procedure is the following: from toric diagrams of theories A and B we determine the
sets of algebraic equations using toric geometry tools exposed in Section 2.1; then we map
these two sets into each other and, finally, we associate at every homogeneous coordinate
zi a trial R-charge, adding the minimal number of new degrees of freedom. The analysis
must consider two different cases:

1. ∆Pe := P
(B)
e − P

(A)
e = 0;

2. ∆Pe := P
(B)
e − P

(A)
e = 1;

P
(•)
e is the number of extremal point of the toric diagram of the theory •. Since in the

oriented theory only the trial R-chagres associated to extremal points matter, in the first
case the two oriented theories have the same number of R-charges while in the second case
the number of R-charges of the oriented theories are not equal and we expect that some
not extremal points of the toric diagram of theory A became extremal points after the
orientifold action. Cases with ∆Pe > 1 are not discussed in this work since no examples
have been found; they may be studied in future works to better understand the link
between geometry, orientifold and the IR duality.

The interpretation of orientifold in this way will be called an algebro-geometrical
orientifold. This orientifold is different from scenario I and III orientifolds because,
referring to scheme (29), the latters act horizontally while the former acts crosswise from
the oriented model A to the unoriented model B. This kind of orientifold implements the
IR duality from the geometric point of view as morphism between Calabi-Yau algebraic
varieties. The schematic picture to have in mind is Figure 9.

In following paragraph we study these two cases with specific examples but this
construction can be repeated for many other pairs and the result is that it is always
possible to construct relevant operators with the new degrees of freedom inserted by
matching the systems containing the polynomial equations that define the geometries of
the pair.

3.1. Different number of external points: ∆Pe = 1

Let us consider the conifold C and C2

Z2
×C; for toric diagrams and toric data we refer to

Examples in Paragraph 2.1.1. Moreover, in those examples determination of the equations
that describe the CY cones have already been done. The conifold has scenario I orientifold
while C3

Z2
has scenario III orientifold and the two theories are IR duals. The set of equations

for the two theories are

C2

Z2

× C : C :

Y2Y3 = Y 2
1 ; X1X4 = X2X3;

Y1 = z1z3z4;

Y2 = z1z
2
3 ;

Y3 = z1z
2
4 .


X1 = z1z2;

X2 = z1z4;

X3 = z2z3;

X4 = z3z4.

(30)

Now we have to map the two equations in all possible ways remembering that after the
orientifold action the toric diagrams are mapped into each other and so the coordinates
zi are effectively the same. However, if we want to keep track of the different R-charges
associated to the homogeneous coordinate zi of the two different toric diagrams, so the

13



R-charges bi = bΩi and ai, we must remember that we have to associate a different set of
R-charges at those zi belonging to different equations and so different theories. We have
to consider the following mappings:

I :


Y 2
1 = X2X3;

Y2 = X1;

Y3 = X4;

II :


Y 2
1 = X2X3;

Y2 = X4;

Y3 = X1;

III :


Y 2
1 = X1X4;

Y2 = X2;

Y3 = X3;

IV :


Y 2
1 = X1X4;

Y2 = X3;

Y3 = X2;

(31)

By associating the set of oriented R-charges {z1, z2, z3, z4} → {0, a2, a3, a4} to the zi coor-
dinates of Yi polynomials and the set of oriented R-charges {z1, z2, z3, z4} → {b1, b2, b3, b4}
to the zi coordinates of Xi polynomials, we get the following relations:

I :


2a3 + 2a4 = b1 + b2 + b3 + b4;

2a3 = b1 + b2;

2a4 = b3 + b4;

II :


2a3 + 2a4 = b1 + b2 + b3 + b4;

2a3 = b3 + b4;

2a4 = b1 + b2;

III :


2a3 + 2a4 = b1 + b2 + b3 + b4;

2a3 = b1 + b4;

2a4 = b2 + b3;

IV :


2a3 + 2a4 = b1 + b2 + b3 + b4;

2a3 = b2 + b3;

2a4 = b1 + b4;

(32)

and they are not all independent. If we make together systems I, II, III and IV we obtain
the following relations: {

I = III ⇒ b1 + b2 = b1 + b4 ⇒ b2 = b4;

I = IV ⇒ b3 + b4 = b1 + b2 ⇒ b1 = b3;
(33)

and we have also the relation
∑4

i=1 bi = 2. These conditions are not sufficient to fix unequiv-
ocally the values of the R-charges to those of the conifold. However this is right, indeed using
the fact we know the values at the superconformal fixed point of the two set of R-charges,
namely {a1, a2, a3, a4} = {0, 2/3, 2/3, 2/3} and {b1, b2, b3, b4} = {1/2, 1/2, 1/2, 1/2}, we
may note that the equations (32) do not do the right job. Nevertheless, if we admit the
existence of a new operator (an orientifold-mapping operator) with R-charge ã = 1

3
we

note that, for example,

I :


2a3 + 2a4 − 2ã = b1 + b2 + b3 + b4;

2a3 − ã = b1 + b2;

2a4 − ã = b3 + b4;

⇒


22
3
+ 22

3
− 21

3
= 1

2
+ 1

2
+ 1

2
+ 1

2
;

22
3
− 1

3
= 1

2
+ 1

2
;

22
3
− 1

3
= 1

2
+ 1

2
;

(34)

now we have the right matching.
Finally, let us now consider the fields associated to C2

Z2
×C and their R-charges [27, 28].

Referring to Figure 6 we have

⟨q⃗1, q⃗2⟩ = 2 → a3

⟨q⃗2, q⃗3⟩ = 2 → a2

⟨q⃗3, q⃗1⟩ = 2 → a4, a4 + a1

(35)
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z1

z2

z3z4

q⃗3

q⃗2

q⃗1

Figure 6: Toric diagram of C2

Z2
× C with the useful vectors to associate fields and R-charges.

where
⟨u⃗, v⃗⟩ := det

[
u(1) u(2)

v(1) v(2)

]
.

Hence we have 2 fields with R-charge a3, 2 fields with R-charge a2, 1 field with R-charge
a4 and 1 field with R-charge a4 + a1. Despite in the oriented theory charge a1 does not
play any role, here, in the unoriented one, we can identify a1 ≡ ã and so there is a field
with a new R-charge due to orietifold action; we call it Π5. It is interesting to note that
field Π associated with the R-charge a4 + ã has R = a4 + ã = 2

3
+ 1

3
= 1. We can build up

a relevant deformation with Π, for example Oi = ΦiΠ where Φi are the other chiral fields
with R-charge R[Φi] =

2
3
. The scaling dimension of Oi is given by ∆Oi

= 3
2
R[Oi] =

5
2
< 3.

This makes sense given that orientifold has the effect to make the theory flow into the IR
regime; so this operator turns on and the theory becomes IR dual to another theory that
has the correct set of R-charges to match systems (32).
One may wonder since the mapping is not one to one; however this seems to be a peculiarity
of very symmetric models described by highly symmetric toric diagrams with small number
of points. Indeed in the case of C and C2

Z2
×C there are exactly four ways of superimposing

the two toric diagrams so as to place the greatest number of points of the two diagrams
in the same position. From the field theory point of view this ambiguity is probably due
to the flavour global symmetries of the models since in both the set of R-charges the
R-charges itself are identical.

3.2. Equal number of external points: ∆Pe = 0

Consider the two theories SPP
Z2

and L(3,3,3); their toric diagrams are drawn below

z1z2

z3

z4

z5 z6

z7

z8

z1z2

z3

z4

z5

z6

z7

z8

Figure 7: Toric diagrams of SPP
Z2

(right) and L(3,3,3) (left).

5Its bosonic part will be dubbed puppon while its fermionic one puchino. This field is the one associated,
according to [27] or [28], to the R-charge given by the combination of the new charge entered in the game,
ã, and the other charges.

15



To determine the set of equations describing the two varieties we follow the step highlighted
in Section 2.1.
Let us start with SPP

Z2
. We have m− n = 8− 3 = 5 charge vectors solution of

1 0 0 0 1 1 1 1
3 3 2 1 −1 0 1 2
1 1 1 1 1 1 1 1





Qa
1

Qa
2

Qa
3

Qa
4

Qa
5

Qa
6

Qa
7

Qa
8


= 0⃗ ⇒


Qa

1 +Qa
5 +Qa

6 +Qa
7 +Qa

8 = 0

3Qa
1 + 3Qa

2 + 2Qa
3 +Qa

4 −Qa
5 +Qa

7 + 2Qa
8 = 0∑8

i=1Q
a
i = 0

;

(36)
where a = 1, ..., 5. Solution space can be parameterized as follows:

Qa
1 = −Qa

5 −Qa
6 −Qa

7 −Qa
8;

Qa
2 = Qa

4 + 4Qa
5 + 3Qa

6 + 2Qa
7 +Qa

8;

Qa
3 = −2Qa

4 − 4Qa
5 − 3Qa

6 − 2Qa
7 −Qa

8;

(37)

the equivalence relations are given by

(z1, z2, z3, z4, z5, z6, z7, z8) ∼
∼ (λQa

1z1, λ
Qa

2z2, λ
Qa

3z3, λ
Qa

4z4, λ
Qa

5z5, λ
Qa

6z6, λ
Qa

7z7, λ
Qa

8z8),
(38)

where Qa
1, Q

a
2, Q

a
3 satisfy (37). The 8 invariant polynomials can be constructed in a simply

way: as first step we consider the homogeneous coordinates with not independent charges
(in this case z1, z2, z3) and then we multiply them by the right combination of the other zi,
in order to compensate the transformation under the equivalence relations; the second step
is to build up the other polynomials taking product or quotient of polynomials constructed
at the first step. This procedure not only gives us the invariant polynomials but also the
relations between them. Invariant polynomials and relations are given by

X1 = z1z5z6z7z8;

X2 = z2z
−1
4 z−4

5 z−3
6 z−2

7 z−1
8 ;

X3 = z3z
2
4z

4
5z

3
6z

2
7z8;

X4 = z1z2z
−1
4 z−3

5 z−2
6 z−1

7 = X1X2;

X5 = z1z3z
2
4z

5
5z

4
6z

3
7z

2
8 = X1X3;

X6 = z2z3z4 = X2X3;

X7 = z−1
1 z3z

2
4z

3
5z

2
6z7 =

X3

X1
;

X8 = z−1
2 z3z

3
4z

8
5z

4
7z

2
8 = X3

X2
.

(39)

For L(3,3,3) we follow the same steps. We have m − n = 8 − 3 = 5 charge vectors
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solution of

1 0 0 0 0 1 1 1
3 3 2 1 0 0 1 2
1 1 1 1 1 1 1 1





Qa
1

Qa
2

Qa
3

Qa
4

Qa
5

Qa
6

Qa
7

Qa
8


= 0⃗ ⇒


Qa

1 +Qa
6 +Qa

7 +Qa
8 = 0

3Qa
1 + 3Qa

2 + 2Qa
3 +Qa

4 +Qa
7 + 2Qa

8 = 0∑8
i=1Q

a
i = 0

;

(40)
where a = 1, ..., 5. Solution space can be parameterized as follows:

Qa
1 = −Qa

6 −Qa
7 −Qa

8;

Qa
2 = Qa

4 + 2Qa
5 + 3Qa

6 + 2Qa
7 +Qa

8;

Qa
3 = −2Qa

4 − 3Qa
5 − 3Qa

6 − 2Qa
7 −Qa

8;

(41)

the equivalence relations are given by

(z1, z2, z3, z4, z5, z6, z7, z8) ∼
∼ (λQa

1z1, λ
Qa

2z2, λ
Qa

3z3, λ
Qa

4z4, λ
Qa

5z5, λ
Qa

6z6, λ
Qa

7z7, λ
Qa

8z8),
(42)

where Qa
1, Q

a
2, Q

a
3 satisfy (41). Invariant polynomials and relations are given by

Y1 = z1z6z7z8;

Y2 = z2z
−1
4 z−2

5 z−3
6 z−2

7 z−1
8 ;

Y3 = z3z
2
4z

3
5z

3
6z

2
7z8;

Y4 = z1z2z
−1
4 z−2

5 z−2
6 z−1

7 = Y1Y2;

Y5 = z1z3z
2
4z

3
5z

4
6z

3
7z

2
8 = Y1Y3;

Y6 = z2z3z4z5 = Y2Y3;

Y7 = z−1
1 z3z

2
4z

3
5z

2
6z7 =

Y3

Y1
;

Y8 = z−1
2 z3z

3
4z

5
5z

6
6z

4
7z

2
8 = Y3

Y2
.

(43)

Let us now proceed with the matching between sets (39) and (43). Since we have ∆Pe = 0
we can not consider all the not extremal zi, indeed we expect that no new point enters in
the game. We note that if we match the first three polynomials of the two sets we get
automatically that all other polynomials match, so

X1 = Y1 ⇒ z1z5 = z1z6 ⇒ a3 + a4 = b1 + b4;

X2 = Y2 ⇒ z2z
−1
4 z−4

5 = z2z
−2
5 z−3

6 ⇒ a2 − a1 − 4a4 = b2 − 2b3 − 3b4;

X3 = Y3 ⇒ z24z
4
5 = z35z

3
6 ⇒ 4a4 + 2a1 = 3b3 + 3b4.

(44)

If we now consider the set of non-vanishing R-charges of SPP
Z2

({a1, a2, a3, a4} = {1− 1√
3
, 1−

1√
3
, 1√

3
, 1√

3
}) and L(3,3,3) ({b1, b2, b3, b4} = {1

2
, 1
2
, 1
2
, 1
2
}) we note that system (44) does not

match unless we suppose the existence of a new operator (an orientifold-mapping operator)
with R-charge ã = 2−

√
3√

3
.
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z1z2

z4

z5

q⃗1

q⃗2

q⃗3

q⃗4

Figure 8: Toric diagram of SPP
Z2

with the useful vectors to associate fields and R-charges.

Following the same steps of the case ∆Pe = 1 we can associate R-charges to the fields
of theory SPP

Z2
.

Referring to Figure 8 we have

⟨q⃗1, q⃗2⟩ = 4 → a3;

⟨q⃗2, q⃗3⟩ = 2 → a2;

⟨q⃗2, q⃗4⟩ = 2 → a1 + a2;

⟨q⃗3, q⃗4⟩ = 2 → a1;

⟨q⃗4, q⃗1⟩ = 4 → a4.

(45)

In this case we do not have an obvious candidate to play the role of Π since no new
extremal point enters in the game. Despite this, we can construct relevant operators that
perturb the conformal theory and induce the RG flow to the dual theory in the IR. As in
the ∆Pe = 1 case we add the new R-charge to the point that must be moved to transform
the toric diagram of SPP

Z2
into the toric diagram of L(3,3,3), namely z5. Therefore Π is a field

with R-charge R[Π] = a4 + ã and a relevant operator can be constructed, for example, as
Oi = Πχi where χi are the two fields with R-charge R[χi] = a1+a2. The scaling dimension
of Oi is given by ∆[Oi] =

3
2
R[Oi] =

3
2
< 3.

In this case we have only one matching which is suggested by the fact that we have only
one way of superimposing the two toric diagrams so as to place the greatest number
of points of the two diagrams in the same position. Indeed the toric diagrams are less
symmetric with respect to the case of C and C2

Z2
× C and the field theories has less flavour

global symmetries.

4. Brief discussion on the holographic dual

In Section 3 we have shown that, assuming the orientifold is able to change the
geometry by transforming the CYA cone into the CYB cone we are forced to consider
relevant operators which induce an RG flow that we know must end in a new superconformal
fixed point. In holography we are able to build up gravity solutions that are dual to RG
flows [39].
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4.1. The toy model for holographic duals of RG flows and beyond
Let us consider a set of scalar fields ϕa in a AdS5 background with coordinates

(x0, x1, x2, x3, z)6 and action given by

S =

∫
d4xdz

√
−g

[
R
4
− 1

2
Gab∂Aϕa∂

Aϕb − V (ϕ)

]
. (46)

We assume a 4D Poincaré invariant metric of the form ds = dz2 + e2Y (z)dxµdx
µ, known

as the domain wall ansatz, that we recognize as Poincaré patch AdS with radius R if
the warp factor is a linear function Y (z) = z

R
and using the redefinition e

z
R = R

z
. Fields

equations read

3(∂zY )2 − 1

2
Gab∂zϕa∂zϕb + V = 0;

Gab∂
2
zϕb + 4∂zY Gab∂zϕb =

∂V

∂ϕa

;
(47)

an obvious solution is given by the negative critical points of the potential Vcrit and a set
of constant scalars,

∂V

∂ϕa

= 0, ∂zϕa = 0; (48)

then the second equation is trivially satisfied while the first gives us (∂zY )2 = −Vcrit

3
. Up

to coordinates redefinition we can then write

Y (z) =
z

R
with

1

R2
= −Vcrit

3
(49)

this is nothing but AdS with its radius controlled by the critical point of the potential. Now
we can expand the action around this solution and we can infer the conformal dimension
of a CFT operator Oa from the masses of the quadratic fluctuations ma,

R2m2
a = ∆a(∆a − 4). (50)

At this point we are looking for more generic solutions that are asymptotically AdS; we
will consider solutions which have linear warp factor Y (z) = z

R
and constant ϕa near the

boundary at z → ∞ and in the deep interior for z → −∞. This is conjectured to be dual
to an RG flow from a UV fixed point to an IR fixed point. It is natural to identify the
radial coordinate z with the field theory RG scale via µ = µ0e

z
R , this choice guarantees

that in the UV, at the AdS boundary, we have µ → ∞ for z → ∞, while in the deep
interior we have µ → 0 for z → −∞. As we know the exact identification of the RG
scale is scheme dependent and a particular choice of coordinates on the supergravity side
corresponds to a particular choice of renormalisation scheme on the field theory side. Said
in other way, our goal is to find an interpolating flow solution of (46) which interpolates
between two stationary points. In AdS/CFT language, this means that we are looking
for a domain wall solution interpolating between an AdS space of radius RUV for z → ∞
and another AdS space of radius RIR for z → −∞. At the same time, the scalars ϕa are
expected to flow from a constant ϕaUV

in the UV to a constant ϕaIR in the IR. A domain

6We are going to use Greek indices for 4-dimensional quantities and capital Latin indices for 5-
dimensional ones
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wall solution of this type is expected to be dual to a field theory RG flow between two
conformal theories.
Since for z → ±∞ we have an AdS space-time we can use the holographic dictionary: on
the boundary and in the deep interior region the scalars behave as

ϕa(z) ≃ Aaz
4−∆a +Baz

∆a = Aae
(∆a−4)z +Bae

−∆az (51)

in which Aa is the source of Oa and Ba is its VEV. If Aa ̸= 0 the solution describes a
deformation of the CFT by operator Oa while if Aa = 0 and Ba ̸= 0 it describes a different
vacuum of the CFT where the operator Oa develops a non vanishing VEV. In both cases
conformal invariance is broken and a RG flow is triggered; the gravity solution is dual to
this RG flow.
Particularly interesting is the case in which the Oa operator is relevant and the RG flow
leads to a new fixed point and this is possible if and only if the potential V (ϕ) has more
than one critical point (in such a way that another AdS solution with different radius
is possible); the gravity solution is a kink interpolating between the two critical point
AdS solutions. In order to have an RG flow that starts from a CFTUV we need a relevant
operator (very similar to what happens in IR duality linked to the algebro-geometrical
orientifold) and to hit a CFTIR we need the operator to become irrelevant there. Looking
at the mass-dimension formula this means that in the relevant operator case the squared
mass of the scalar fluctuation must be negative (a maximum of the potential V (ϕ)) while
in the irrelevant operator case the squared mass must be positive (a minimum of the
potential V (ϕ)).

The construction of holographic dual of RG flows could be applied to explain the IR
duality arising from algebro-geometrical orientifold. We have seen how the duality requires
the presence of relevant operators that deform the initial CFT associated to CYA cone into
the CFT associated to CYB cone. In the spirit of the toy model presented above, this entire
IR duality mechanism could be interpreted as the holographic dual of a suitable effective
supergravity solution that has to interpolate between the supergravity solution of oriented
model A and the supergravity solution of unoriented model B. Let us label the oriented
models as oCFTA and oCFTB while the unoriented models as uCFTA and uCFTB. If we
are able to perform the Kaluza-Klein (KK) reduction on the SE base manifolds X5

A and
X5

B we get two gauged supergravity descriptions with two different potentials VX5
A

and VX5
B
.

We expect these two gauged supergavity theories are consistent truncations of type IIB
superstring theory, respectively, on AdS5 ×X5

A with gauge group GX5
A

and on AdS5 ×X5
B

gauge group GX5
B
. This is in analogy with the FGPW flow [40], which is the holographic

description of the Leigh-Strassler RG flow [41] of N = 4 SYM theory. Moreover, as in the
FGPW flow and according to AdS/CFT philosophy, we expect the gauge groups are given
by the isometry groups of the SE bases.
The flow would be holographically described if we are able to find a suitable supergravity
description with a potential which has several critical points. The maximum of the
potential has to preserve the original GX5

A
symmetry while another critical point has to

preserve the GX5
B

symmetry. However, this kind of approach poses technical and conceptual
challenges. First of all the KK reduction on the compact Sasaki-Einstein manifold X5 is
far more difficult than for S5. Therefore, it is not easy at all to build up explicit potentials
for these supergravity descriptions. Moreover, from the conceptual point of view, the
supergravity description cannot be the full story since the orientifold is non-perturbative.
The supergravity description has to be uplifted in a full string theory description which
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must match with the string theories associated with the two CFTs A and B. Anyway, it is
not clear if such suitable supergravity model exists but if so, we will have a holographic
description of the flow induced by the algebro-geometrical orientifold itself and further
investigation on this point will be part of future research works.

5. Conclusion

Orientifold projections give the opportunity of new possibilities to the creation of field
theory models from string background called unoriented models [13]. The appellation
"unoriented" is mainly due to the action of the orientifold map on the string oscillators: the
involution makes oriented string unoriented one and a Chan-Paton like analysis suggests
the possibility of new gauge group like SO(N) and Sp(2N). However, orientifold behaviour
is inferred by comparison with the flat-space behavior but, probably, orientifold have an
intrinsic non-perturbative nature [31]. This is also suggested by a recent interesting new
feature proposed in [18] and expanded in [19]: the so-called scenario III. What happens is
that a theory after a scenario III orientifold shares the same R-charges, central charge and
superconformal index of another orientifolded theory coming from a scenario I orientifold.
The crucial point is that these physical quantities are the same not only in the large
N limit but for every N [18, 19]: this is a non-perturbative effect. Since the physical
quantities are the same in the IR we refer to these theories as IR duals and, since in the
geometrical engineering the field theory depends on the geometry of the CY cone, these
two orientifolded theories can be considered to have the same CY cone geometry. This
means that a changing in the geometry of the cone has to happen due to the orientifold
action. The change, due to the orientifold, can be traced back to the equations that
describe the algebraic CY varieties and we require the matching between these sets of
equations. In this sense the orientifold has an algebro-geometrical interpretation as a
morphism between algebraic varieties given locally by polynomials. This interpretation
has as its guiding idea the flop transition and the other geometrical changing in string
theory compactifications [20, 21, 22, 23]. The properties and a more deep understanding
of this interpretation, such as the answers to the questions: "Are orientifold regular maps
or rational maps? Are they biregular or birational?" could be fertile ground for future
works. We stress that if orientifold are such kind of maps for the CY cones they open the
door to the use of the theory of category with orientifold as morphisms and field theory
as objects. Therefore, orientifold acts both on string states and on the geometry of the
space-time.

From the requirement of the matching between these sets of equations describing
the CY cone of the two theories and using some tools of algebraic geometry and toric
geometry, reported in 2.1, we infer the existence of relevant operators that deform the
initial CFT triggering an RG flow towards the IR regime. A schematic picture of the flow
is given in Figure 9. The flow could be described using a holographic dual, whose toy
model is presented in 4.1, but the prohibitive Kaluza-Klein reduction on the base of a
generic CY cone makes difficult the explicit construction. Moreover, due to the intrinsic
non-perturbative nature of orientifold, this supergravity dual is expected to be only an
effective description that must necessarily be uplifted in full string theory.
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Figure 9: Schematic picture of the RG flow triggered by the orientifold action. The little "o" stays
for "oriented" while the little "u" stays for "unoriented". The two unoriented models lie on the same
conformal manifold while the two oriented models are not related in any way. The flow triggered by the
algebro-geometrical orientifold action links the oriented model A to the unoriented model B.
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